Development of computer-assisted instruction units in calculus

Peter Mbi Agbor-Etang
Iowa State University

Follow this and additional works at: https://lib.dr.iastate.edu/rtd
Part of the Science and Mathematics Education Commons

Recommended Citation

Agbor-Etang, Peter Mbi, "Development of computer-assisted instruction units in calculus " (1979). Retrospective Theses and Dissertations. 7261.
https://lib.dr.iastate.edu/rtd/7261

INFORMATION TO USERS

This was produced from a copy of a document sent to us for microfilming. While the most advanced technological means to photograph and reproduce this document have been used, the quality is heavily dependent upon the quality of the material submitted.

The following explanation of techniques is provided to help you understand markings or notations which may appear on this reproduction.

1. The sign or "target" for pages apparently lacking from the document photographed is "Missing Page(s)". If it was possible to obtain the missing page(s) or section, they are spliced into the film along with adjacent pages. This may have necessitated cutting through an image and duplicating adjacent pages to assure you of complete continuity.
2. When an image on the film is obliterated with a round black mark it is an indication that the film inspector noticed either blurred copy because of movement during exposure, or duplicate copy. Unless we meant to delete copyrighted materials that should not have been filmed, you will find a good image of the page in the adjacent frame.
3. When a map, drawing or chart, etc., is part of the material being photographed the photographer has followed a definite method in "sectioning" the materiai. it is customary to begin fiiming at the upper ieft nand corner of a large sheet and to continue from left to right in equal sections with small overlaps. If necessary, sectioning is continued again-beginning below the first row and continuing on until complete.
4. For any illustrations that cannot be reproduced satisfactorily by xerography, photographic prints can be purchased at additional cost and tipped into your xerographic copy. Requests can be made to our Dissertations Customer Services Department,
5. Some pages in any document may have indistinct print. In all cases we have filmed the best available copy.

University
 Microfilms International

Agbor-Etang, Peter Mbi

DEVELOPMENT OF COMPUTER-ASSISTED INSTRUCTION UNITS IN CALCULUS

University Microfilms

International 300 N. Zeee Roas, Ann Atror. MI 48106

```
            Deveiopment of computer-assistec
            instruction units in calcupus
                by
                    Feter Mbi Agbor-Itang
                            A Sissertation Submitted to the
Graduate Faculty in Pariiai Fun=iniment of the
            Requirements for the Degree of
            DOCTOR OF PHILOSOHFY
            Department: בnoresszonal Studjes
            Najor: Education (Higher)
```

Approveci:

Signature was redacted for privacy.
In Cheryge of raljor work

Signature was redacted for privacy.
Farl the Dajor Department

Signature was redacted for privacy.

```
For the Graduate Colleze
```

Iowa State University Ames, Iowa

TABLE OF CUNTENES

Page
I．INERODUCMION I
A．Rationale for Developing the Units 2
3．Purpose of the stuay 3
C．تistory of CAI 6
2．Outline of the Unapters 11
II．REVIE゙ゥ OF LITERATURE 13
A．Attitudes towards CAI 14
B．Capaoilities of CAI in Matnematios 16
C．Recommendations in Developing CiI 21
D．Documentation of OAI 23
III．DESCRIFTION OF TLE CAI SYSTET 25
A．The CAI Hardware，Software anc Courseware 26
3．ヨasic こrinls Instruction ÜSing Gij 31
C．Relationship between CAI and CMI 34
D．Strategy for Developing CAI 40
IV．THE SICCIT AND PLATO SYSTEM 44
A．The TICCIT System 44
3．The PIATO System 49
C．Evaluation of the pLATO SYSTEin 55
\because ．DESCRIETION OE THE GAUCULUS UNITS 58
Page
A．General Ubjectives 58
B．Objectives of Each Unit of Instruction 60
VI．DISCUSSION 72
A．Ubservations 72
B．Recommendations 75
VII．SUNIIARY 77
VIII．BIBLIOGRAPHY 80
IK．ACKNOWLEDGENTS 86
X．APPENDIX A：CAICULUS CAI UNITS 88
A．Unit I 88
3．Unit 2 92
C．Unit 3 97
D．Unit 4 102
玉．Unit 5 106
$F=$ Unit 6 シュ
G．Unit？ 116
H．Unit 8 121
I．Unit 9 129
J．Unit 10 133
n．unit 11 138
1．Uni $1+12$ 144
A．Unit 13 152
N．Unit 14 $+57$
rage
O. Unit is 103
=. Unit 16 168
Q. Unit 17 174
R. Unit 18 275
こ. Unit 19 184
T. Unit 20 192
SI. APEENDTK $3:$ SIGN-ON PROCEDURE 201
A. The LIATC Keyboard 203
3. כasic Aspects or : LAMC 204

Figure i. Relationshig between GAI, CiII, and traditional instruction 36

LISO OP TABTES

Page

Table I. Data on the major CAI ain UII systems 38

I. INTRODUCTION

Computer-assisted instruction (CAI) is the concept of using the electronic computer to aid learning. Some equivalent widely used terms for CAI are computer aided instruction and computer based instruction. Instruction with the help of the computer is a recent educational development.

New Trends in Mathematical Teaching (33) alludes to this, by saying:
The traditional method of teaching mathematics was quite satisfactory in its day. It met the requirements and fulfilled the aims set. The period had its outstanding mathematicians and there were prominent instructors among the educators who taught this subject with excellent results. But the objectives for mass teaching then, no longer satisfy the demand now. As a result of scientific discoveries and technological development, students today face problems which only a short time ago had not even existed. These discoveries call for the increasing application oi mathematics.

Hence, it may be necessary to teach mathematics in a different way to keep pace with the steadily growing demands of life and practice.

The economic and social pressures on educational
institutions are forcing these institutions to
improve instruction. $\operatorname{Zinn}(58)$ says that as the ratio
of students to instructors increases, technology could
be offered to assist more students without sacrificing
student achievement．Public schools are being criticized for not teaching the basic skills required to pursue more advanced work．Morgan（30）notes that colleges are complaining continually that students can not read write or do mathematics．The concerms about basic skills instruction and achievement are making school systems look closely ai their curriculum and instructional practices．In increasingly large numbers， educational institutions are finding that students＇ lach oi basic skilis may be remedied or eliminated by aporopriate computer assistance．

The teaching of mathematics today aims at making the student capable of applying his knowledse and expandins it．In CAI，the students are encouraged to improve their capabilities．CiI allows students to make mistakes and does not suiject students to con－ tinuous scolding or public censure，which might tend to decrease their seli－assurance．

```
    A. Rationale For Developins the Units
    There is an increase in the use of computer
technology in #overmment, buミ氵n=sミ, sロミシno= mnc
engineering. The effect of computer technology is
gradually being felt in education too. In a researcon
```

project, Dimas (15) statis the need of developed CAI units by students in various courses.

There have been studies in the effectiveness of computer-assisted instruction in college algebra courses and in using computer-assisted instruction in overcoming attitude barriers. But there have been very few studies in developing teaching units for a calculus course in which the program is typed on a computer terminal to obtain an immediate electronic response. This study is therefore devoted to the development of computer-assisted instruction units that will facilitate the understanding of a calculus course by students.
B. Purpose of the Stuay

The purpose of this stucy is to develop a series of units with the computer being used to assist the teaching of Mathematics 12l. Mathematios 121 is a calculus course taught at Iowa State University for students in engineering, science and mathematics. The Gai system chosen in this stuay was PLatio (Prosrammed Iogic for Automated Teaching Operatior). More information will be provided about the PLATO system in chapter four.

The general purpose of this project is to individualize instruction and create an environment in which the student's skill and self-assurance in calculus are increased. The author's experience in teaching college calculus indicates that some stucents have great difficulty in learning university calculus by use of the traditional lecture method. The computer might be used to enhance student comprehension of calculus. Individualized instruction means personalizing of the instructional process to conform more closely to the individual capacities of the leamer. Nawaz and Tanveer (31) point out that the use of individualized instruction is a significant trend in education and represents a synthesis of philosophical and psychological thought, and is a meeting ground for instructional practice. Supported by technology and research, individualized instruction provides systematic pattems of learning for students. Some professional ecucators support the new idea in order to meet current demands of accountability and to improve classrom instruction and student leaming.

Nawaz and Tanveer (31) state that experts view individualized instruction in a variety of ways. Some of these ways can be stated as follows:

1. stucients learn throuzh various perceptual structures. They assimilate varying amounts of content at different rates of seeed and vary in their retentive abilities.
2. Leamers need to develop a wide variety of leaming styles for effective leaming outcomes.
3. The complexity of society necessitates that stucents should learn on their own. The emphasis should be on the structure of knowiedge and the modes of acquiring intormation. Factors such as cost-effectiveness of education, accountabiinty and negative eriects of ability groupinz provide incentives for muitiple routes and alternatives characteristic of individuainzed instruction.
4. Leaming taxes place on an individual basis, and therefore educational experiences shouia be organized around each student. Thus the educミtional aspect must be filexible, adaptable and capable of meeting the demands of the individuai and those of society.
5. Leaming is an active not a passive process. It shouid invoive participation in a task rather than mere absorption of information.
6. Each individual needs to develop qualities of individuaiity in order to cope with the complexities, and uncertaunties of mass society.

The promise of individuaizzed instruction is that of a pervetuai concem. for the uniqueness of each incividuai.
O. Aistory of CA플

Cat was introcuced in the late ig5us. suppes and
Vaciren (51) have diviced the perivas of the development of cai into four periods nameiy cai prior to IO65, $0: 1$ from 1965 to 197U, CAI Irom 1970 to 1975 , end Gix Erom 1905 to the present.

1. 21I grion to 1065

Veribers of the combuten incustry were the finst to start using cis proseans to train personnel in the late ly5us. At this time, electric typewsiters and teietypes :uere linced to computers and instructionai modules :"ere presented to leamers who responced with one-syiiabie resyonses. The prognaming ianguages :izre too complicated to je learmed by the lay person, cut
 the Eirst CAI author lenguage ceiled Courseware 1 ,
which educators used to program their ideas more directly.

Suppes and Macken (51) mention that in January 1963, the Institute for Mathematical Studies in the Social Sciences (IMSS) at Stanford University starteed a program of research and development in CAI which ias resulted in today's widely used applications. In late 1963, IMSS demonstrated its first instructional program, which was a tutorial curriculum in elementary mathematical logic. In 1964, the preiiminary version oI an elementary mathematics program was tested. CAI was first used in an elementary school in 1965 when forty-one fourth grade children were given daily arithmetic drill and practice lessons in their classroom on a teletype machine that was connected to Inss:s telephone lines.

2. CAI from 1965 to 1970

During the 1965 to 1966 school year, the Stan iord CAI program expanded to three schools all containing teletypes linhed to the IMSS computer. At this time, about 270 elementary students and 60 high school students received drill and practice CAI lessons in mathematics while 50 elementary students continued to received the tutorial mathematical logic program
at the institute.
Using an IBn 1500 system, the Brent:rood Project was started. The Brentwood Project was an investigation by IMSS of the feasibility of teaching mathematics and reading as an integral part of an elementary school program by using individualized CAI over an extended period of time. Each student had two display Gevices, a cathode-ray tube (CRI) and a sixteen millimeter film projector of the rear projection type. Each station contained a headset for the student and a headset for the instructor, by which previously recorded oral instructions could be transmitted. The students responded by touching a light yen on one of the answer choices displayed on the CRT or by typing an answer on a keyboard.

In IOGO, ISSS deveIoped יniversitur-Ievel computer-
based programs. Stanford students in a first-year Russian program in 1967 eliminated all resular classroom work and iearned at Model 35 teletypes and cyrillic keyboards and audiotapes with earphones. The statistical evaluations of this program showed positive results in terms of academic achievement and student
 tested an introductomy college-level course in
elementary mathematical theories.
At the University of Illinois another project was besun in connection with Control Data Corporation (CDC) and the National Science Foundation. This was the PIATO system which today delivers interactive material using alphanumerics, graphics, and animation. By 1971, the PIATO system had been used in curriculums concerning library use, nursing and studying CAI in role-playing games.

At the University of Texas, a CAI chemistry
course was described containing fifteen modules of supolementary material for the introductory course in general chemistry while the effects of leamer control in a CAT precalculus mathematics course was investisated. Also, at the University of Texas in lopo, reports were made of the resuits comparing computer programing with traditional instruction in the same course.

3. CAI from 1970 to 1975

Early in 1972 at Jrigham Young Universitog, there was development and field testing of the Time-shared Interactive, Compuier-Controlled, Information Television (mICOIT) system of CAI. The purpose of the TICCIT project was to use minicomputer and television
technology to deliver CAI lessons and mathematics to community college students. In 1974, the mathematics and Enslish programs were being developed at Phoenix College, and a thirty-two terminal system for delivering the TICCIT program had been installed at Brigham Young University.

In 1970, the CARs project was developed. The CARE curriculum is a self-contained college level course designed to identify students with mental handicaps that are likely to adversely affect their academic progress. The method of dissemination was a mobile unit that served instructors who requested the program. Instructors in Nashington, Texas, Pennsylvania and iiaryland were served by this method in 1972. In 1975 the MinS had included courses in the following Iansuages: 0id Ghurch Siavonic, fistory of the Russian Literary Language, Introduction to Bulgarian, Introduction to BASIC, Introduction to IISE and many courses in music.
4. CAI from 1975 to the oresent

3y 1976, Suppes and others at Stanford University made revisions in CAI to inclucie elementary school curriculums and some special appications on tinose curriculums to hearing-impaired students. One of the

CAI systems presently available is through the Computer Curriculum Corooration (COC). A CCC CAI consists of an instructional computer that can provide individualized lessons to as many as ninety-six CRT or teletype terminals simultaneously. The terminals are installed at an instructional site and then linked to the computer via telephone lines. CCC offers a large variety of courses for elementary and junior college students. CCC has currently several thousand terminals installed throughout the United States. Suppes and Macken (51) report that the Physics Computer Development Froject at the University of Caiifomia in Irvine has developed a CAI course in physics in which students control the timing of their progress and have a choice of content and method of presentation. There have been few reportec developed CAI units in calculus and no complete calculus courses.
D. Outline of the Chapters

The materials presented in this study are organized into eieven cnapters. The firsi chapter describes the need for the study, the purpose of the study and history of CAI. The second chapter includes the review of literature relating to using the computer to assist
instruction. The third chapter contains a description Of CAI hardware, sortware, and courseware and stratesy for developing CAI. The fourth chapter contains description of the TICCIT and PLATO systems. The fifth chapter elaborates on the objectives of using CAI in a university level calculus course. A further discussion of the observations and discussion of the calculus units is contained in the sixth chapter. A summary of the project is presented in chapter seven. The eighth chapter contains the bibliography winile the ninth chapter contains acknowledgments. Chapter ten contains the calculus units of instruction while chapter eleven contains the instructions to operate PIATO.

iathematics I21 is a course taught at Iowa jiate University in which the mathematicai sxilis of differentiation and integration are developea to a level necessary For many engineering, science and mathematios ccurses. The jreat diversity in the mathematical backsrounds anc abinities oi the stucents typically Found in latnematics i2I inaicates the need For a form Of instruction that can cater to tine individual requirenents of the students, avistinen et al. (2j) stete that a sreat deai of evidence suegests that individuaiized instruction can be efiective in mathemetical skilis.

Jut Stolurow (50) asseris that 0n玉 is not the Banacea for tociay's educationai problems. Inere is no sangle solution to oroblems as comples as these. Jomputer-assisted instruction is however a substantial innovaiion in ecucation. Gif nas been companecl to Gutenoeะฐ's irvention of the printins gress in terns
 analysis of CAI as a conceot in contrest to axistina systems, suछgests that it has the potential for making at ieast one order of masnituale of change in tine
educational process. The printing press made mass education possible by recording knowledge for economical dissemination. CAI makes individualization possible. The following section illustrates the capabilities and recommendations in developing CAI.
A. Attitudes towards CAI

Although many studies have compared the achievement of stucients using computer-assisted instruction with the achievement of students using the lecture and demonstration method, few studies have been made to assess the attitudes of students using CAI. Kockler (22) made a stuay of sixty-four students who enrolled in a mathematics course. The sixty-four students were randomly assigned to an experimental group or a control group. The control group received instruction by the lecture and demonstration method only while the experimental group received the same instruction usint six computer-assisted units. Both groups of students were given a pre-test and a post-test to measure their attitudes towards CAI. The conclusions of Kociler (22) were:

1. The attitude toward CAI in the experimental group improved significantly from pre-test
to nost－test，but tine control groups attitucie towaro Aif dici not onane sienioicently．

2．Attitudes towarc mathematios mproved in both the CAI group and the control sroup． \because Jomputer－assisted instruction and tracitiona！ instinuction both produced significant achievenent sains in students，but the eaperi－ mentai brouv required less time in their instruction tran the traditionally－instructec stucints．

4．Attituce towara Cil was unreiatec to ミithen atituct toward mathemetics or achievement in Mathematics．

5．Completing the short atitucinal question－ naires did not significentiv ニrニ̈ect the students resronse to the major questionrairs nessurine attitucie towari cia．

The growth of Ciz in educationEl institutions depencs on the ettitudes of stucents and instructors towards cis．Stolurow（50）says：

Uany people who First hear Jar mant to aee it and wen they do，they so away with the feelins that it will not iast．The reason is that many of the sustems are not being used imechnatively． Another as that they are Erequentiy more sophisticatec intermaliy than they are in
terms oこ educational materizls tiney displa彐．
In efrect，OAI maxes our neasre inowledge of teachins patientiy obvious．Our ignorance cannot go unnoticed the way it むoes in some otiner form of iasinuiction． 3ut it vould be uniair to infar thet the insceauacies of the instructional program on a Eif sustem vere the result of this ture of sustem．This mould be comparable to concluaing from an observation of an ineffective teacher thet 211 teachinz should be ¢lininatė．

3．Canabilities cĖ OAI in liathematice
 Unミversiナy that サas designed to aemonstrate thet the computier cen ze successfully intesmated into the

 サas zono on the I2n 370／158 ذime sharine fustem whose

$0 y$ the Center for Research in Collese Instruction in

integration of computing into a completely restructured calculus course. Another approach has been the establishment of a separate course in paraliel with calculus. Yet another approach hes been the using of the computer as a demonstration device or writing programs which students simply execute at time sharing terminals. The last approach has the advantage of minimizing time spent on computer work.
Bentrey (4) notes that in most colleses and universities, good use can be made of the availsble computing facilities oy integreting CAI into the traditional presentation of calculus. Students need to know what the available faciinties are, how to get access to them and what the appropriate Ianguage is. Students should write thein own simple programs to ¿こvelop a fuiiriledged interest in cal.

Usirg a texbook entitiec "A Survey of Nathematios For ColIege Students using a Programming Languase", Lecuyer (26) conducted an experiment to investisate the efiectiveness of using the computer in teaching a mathematios course. The counse was taugint in two sections. A section was taught by using the above textbook and a computer wile another section was
taught by using the textboois alone. There was no significant difference between the performances of the two sections on the course tests, but the CAI section took less time to complete.

With these results, Lecuyer (26) concluded that the computer is rapidly becoming an extremely important and useful tool in the modern world. Lecuyer (26) also stated that it would seem that all university graduates should know something about the computer. Lecuyer (26) suggests that a computer terminal should be available to students so that they can do their homework at the terminal. The student should be presented with the complete program with an explanation of the program and an illustration of its use.

In a paper presented to the conference on computers in uncergracuate Curricuium, Day (I2) taiked about a course which used the computer to aid learning various mathematics concepts. In the three unit mathematics course the instructor lectured on programing concepts and served as a resource person for the final twelve weeks of the semester. The course was deemed successful since the students learned mathematical concepts well, and developed creative approaches to independent problem solving.

Kieren (21) conducted a study on the use of computers in mathematics courses, and used the computerbased drill and practice procedures in which a student interacts with a computer via one of various types of computer terminals or via a touch-telephone. Much of the work done in this field is based directly or indirectly on the work done at Stanford University. In a Califormia study involving six grade levels in seven schools, students whose arithmetic instruction was supplemented with drill and practice, computer based instruction (CBI) programs had significantly greater post-test gains on the computation section of the Stanford Achievement Test at grades two and three, on concepts at grade three and on applications at grade six. In a similar study in Mississippi, Kieren (2I) reports that there were significant differences favoring CAI. These reports indicated that apart from scholastic achievements, students did respect the computer as a teaching device, attitudes changed positively toward mathematics, but there were no reports of change in attitude toward school and no change in attendance patterns.

In 1977, a study was conducted at Copiah-Lincoln Junior College, Mississippi by Eaugharill (11)
utilizing two algebra classes．One class of thirty－ four students composed the experimental group，and a second class of thirty－two students composed the control group．Soth the experimental and control groups were taught by the investigator．The experimental group was taught by a method designed to facilitate ミlgorith－ mic thinking and problem solving by supolementing traditional classroom instruction with individual interaction with time－sharing computer terminals and with computer oriented techniaues for problem solving． Flowcharts were utilized as an aid to students in analyzing and Followins systematic procedures in order to obtain solutions．Students were instructed to develop a flowchart which depicted a plan for soiution， resta立e solution in the BASIC programming languaze and たyミe the prosram on the computer terminal to obtain an． immediate electronic response．

It was concluded that students who studied the BASIC prosramming language and solved selected alfebra probl＝ms by writing and executing computer prognams， performed as weil on the achievement jest as stucents who stuaied arseora usinz the traditional lecture and demonstration method．Goneover，the time seent on leaming computer mathematics ard using the computer
as a problem solving tool, at the expense of regular classroom instruction, did not adversely affect the achievement of students in the experimental group.
C. Recommendations in Developing CAI Sorlie and Essex (44) reported that in 1973 the school of Basic Medical Sciences at Urbana-Champaign obtained money from the federal goverment to develop a computer based curriculum on the FIATO IV computer system. One hundred fifty computer lessons were developed with each lesson having objectives, selftests and multiple entry and exit points. These computer lessons were designed to be exported to other universities. From a comprehensive evaluation, it was found that students indicated preferences for those lessons which emphasized problem solving. Stucients liked to be able to correspond on line with the authors of the lessons.

This type of student author interaction was
important since many opponents of educational computers charge that the use of a computer dehumanizes students because it removes them from exchanges with their instructors. Sorlie and Essex (44) recommend that to develop Cil, the following points should be considered:

1. A minimum of a six-month funded start-up
phase for planning and recruitment is critical to the successiul development of a CAI project．

2．In order to encourage optimal computer lesson jevelopment，the project shoula be developea and implemented in such a way that it is an integral and meaningitul part of the school＇s educational process．

3．Denine the rescurces necessary to meet the objectives outlined．

4．Special atiention should be given to definning the qualifications of project staff and hiring compe tent inaividuals．
 functioning shouid be むevojed to trミinins staミミ， jmplementing lesson むevelopment and review procecures．

6．The collection of meaningful lesson usase ネaje requires high overhead in sofivare and zrozrammen resources．The collection of these むata should
 of the project．

7．Development of a lesson usase network（multimocial－ sites）seems €ssential，if the exvoriability of lessons is desired．
D. Documentation of CAI

There are many reasons why the documentation is critical in the field of CAI. Kearsley and Hunka (19) add that the development of CAI courseware is an expensive and time-consuming endeavor typically involving fifty to one hundred hours of design and prosramming time for each hour of instruction delivered. Clearly, this development effort can be justified if courseware can be shared by many students at different institutions. Documentation of courseware is essential to ensure that the transfer of a course from one institution to another is possible and successful. Documentation is also necessary to prevent the duplication of similar or identical courseware.

Kearsley (19) mentions two levels of documentation. The first ievei of cocumentation provides a potential user with sufficient information to determine the need for further inquiries. The first level contains the following information:

1. subject matter of the course,
2. status of the course,
3. authors of the course and their addresses,
4. availability and conditions for release of courseware,
5. characteristics of intended student group,
6. types of instructional strategies used,
7. amount of time required to complete the course,
8. support materials required,
9. the system used and the date of documentation,

The second level of documentation is designed to provide detailed information required by people who are actually working with the courseware. This level of documentation includes proctors, computer operators, instructors and students. Documentation is necessary for the ongoing continuity and stability and the instructional effectiveness of the course.

The review of literature has revealed that very few studies have been made in developing CAI units in calculus. The studies concluded that the experimental application of mathematios OAI units in Elementary, secondary, and community colleges showed that students took a shorter time in completing CAI units than the lecture and demonstration method.

III. DESCRIPTION OF THE CAI SYSTEM

The traditional display of CAI is the cathode ray tube (CRT) which is similar to that used in television sets. Initial development of the FLATO project at the University of Illinois produced a plasma based display. Bork (5) says that the CRT technology appears resilient at present. Two fundamental types of information can be displayed on the screen, alphanumeric information (letters and numbers) and graphic (pictorial) information.

Bork (5) states that CAI systems can je divided into the following categories:

1. large-scale time-sharing systems in which hundreds of student stations are utilized,
2. medium-scale time-sharing systems in which fifty to one hundred terminals are used,
3. small time-sharing systems in which two to fifty student stations are utilized,
4. stand-alone systems with occasional access to a remote system,
5. pure stand-alone systems.

PLATO is an example of category cne. The DEC
System 10, the DEC System 20 and Sigma Series are
examples of category two．The PDP 11 is an example of category four．The categories four and five are least known to students．An example of a stand－alone syistem is one just recently developed by Terax Corporation in Scottsdale Arizona．Another example of a stand－alone computer is the PET computer from Commodore．PET is intended for the home market and limited in its capabilities for computer－assisted learning．Thile hardware is important，the major issue is the groduc－ tion of learning materials oy a wide varietij of inȧviduals．

A．The CAI Yarduare，Soİvare and Courseware The change of゙ten made ミs that CAI is dehumanizing， こut Zasiason（27）むisazrees．The eaucational ynomise
 perscnalize the instructional process and to simulate exveriヨnces not reaỉily availajle．Cix lesson（counse－ ware）can serve as tert，test and tutor while compel－ ling stucents to be active participants in tinein om Iearminz．Stuaents mork at their oun jace miIe the CAI lesson monitiors tineir ミrosress and generaliy grevents them From continuing to more advanced yory unless mastery is demonstrated．Students nave
varyina ancunts of control over tineir leaming in which they can review previous instruction，request special help or continue to enrichment activities．The instuxction can be sjetematically prepared，sequenced， tested and revised．

The most basic equipment（haieimare）used to deliver CAI incluees a computer which stores and transmits educajional material and inEomation（courseware）bu means oミ a specializes computer lanziaze（so今t：tars）． The stucients and instructors see the learnins stations （terminals）more often than the computer．The terminal appears as a television on teleorinter which đisplays instruction and srapnic notation and has a Keyset ヨitached to it．Stucents interact with the computer by means of the keyset which has the stanaiard typewniter keys with additional special Function keys． Instructors use these terminals to select curnicula materials for students，to decice the sequence of these materials，to provide students with an inder of Iessons from which to choose，and to monitor students＇ progness or to prepare courseware． CAI is usually prepared Following one or a comoiration of the following courseware moces：daill
and practice, tutorial and simulation. The drill and practice mode is the most widespread partly because it can be used to help instructors make up and check practice exercises. Typically, students are given a series of related questions to answer and are provided immediate feedback to the answers they give. As the student demonstrates mastery, more difficult questions are posed by the computer. In the tutorial mode, students are presented with instruction interpersed with appropriate questions.

Sometimes, the student is allowed to ask related questions which the computer answers. Question formats are commonly multiple-choice, matching, fillin and short answer. Sophisticated GAI susters can catch or allow for misspellings, judge as correct き variety of possible answers inciuding synonyms and phrases and even allow students to touch portions of the display to elicit a computer response. The simulation moce is exciting since it allows the student to discover and generate new information. The results of a current study supported by the National Science Foundation in 1977 shows that courses in which the computer was most frequently utilized are computer science, engineering, business, mathematics,
social sciences, physical sciences and education in order of the greatest usase to the ieast usage. In IOP7, the Human Resources Research Organization (HumRRO) published an Academic Computing Directory which icientified over 150 American schools, colleges and universities that have used CAI successfully. The reasons for this wide usage are:

1. evidence of student achievement,
2. evidence of increased institutional productivity,
3. a variety of applications in many subjects and courses,
4. the teaching of computer Literacy,
5. an outstanding computer science or data processing program,
S. an impact on other peopie or institutions. Lublished studies comparing the effectiveness of CAI to traditional institution repori conilicting resuits, but generaily concluce that CAI is at least as effective and often more effective than the traditional instruction. since most CAI is currently being used to suppiement and compiement traditional instruction, not to replace it, there is great difficulty to compare CAI
and traditional instruetion. Magidson (27) asserts that the effectiveness of CAI is dependent upon the quality and reliability of hardware, software and courseware. An effective CAI lesson which typically takes a student an hour to complete generally takes over one huncred hours of preparation time plus student testing. The PIATO system now has over six thousand instructional hours on it. Magidson (27) alsc states that insofar as cost-effectiveness is concerned, the trend is toward decreasing costs for computer haroware and software despite increasing manpower costs.

A new audiovisual medium combining CaI with videodisc technology is currently being developed by the Control Data Education and iICAT Inc. The videodisc combined with a microprocessor, will permit motion pictures to be used in an interactive.mede. The motion picture can be viewed in single frames, in slow motion or reverse order sequence without sound. Graphic and textslides can be interspersed with motion pictures in any course mode using sound, words, graphics and animation. This new audiovisual medium will ennance the systems approach to instructional design and development.

3．Basic skills Instnuction Usina CaI Computer suppont is essential for keeping deちョミled records on stucent achievement and for deteminins both individual and sroup proseess through the curricuilu．norgen（30）proposes that in an institution of learains decides to purchase，lease or develoz its orm CAI，the follomins asfects should be considersé．

1．ミntur level
To determine the suitability of a proseam for an incividual stuaent，the CAI mocule mizht provide an on－line entry leve？skills test．The instructor should have a list oき objectives on minch a student must show mastery beさore besinning the new program．

2．O2jeロさミves

Instuuctors shoula be provided with the oojectives on each CAI progran，The objectives should be oryanized For instrucjion and each dategory secuenced ju

3．Stratesy
The development of a CAI program should sho：now the instruction is presented．It should be mom
whether the method of presentation is drill and practice, tutorial, simulation or game.

4. Criteria

Information about the successful completion of the total program must be documented.

5. Individual needs

The CAI strategies should be analyzed to determine their adaptability to individual needs. When additional instruction is necessary, the techniques of the second presentation should be different in clearly identifiable ways from the original instruction. Branching should occur automatically whether the student needs enrichment, acceleration or remediation and students should be able to interact with CAI independentiy.

6. Reinforcement

Students sometimes work on paper and pencil tasks with no knowledge of how well or poorly they are doing, but Cat allows each exereise to be graded as it is completed. The reinforcement of knowing how well you are doing immediately upon completion of the task, is one reason students like CAI.

2. Feedback

Hot only is each problem or exercise graded or recordė, but aø̃oresated information is availaile on an objective or a set of objectives. OAI can operate in some ways as a private tutor.

8. Diagnostics

CAI makes individual records available to the instructor. Upon the stucent's completion of an interactive SAI session, the instructor can Find cut what the student has morked on and what should be done nexi.

2. Stucient involvement

CAI demands active involvement from the stucient. Creative prosrams motivate stucents. Although a student may enter an answer afiter a litile or no thought, a response of "wrong" Erom the computer is unweicome. AFter the Eirst Fev impulsive answers, most students reilect before responding. The result of continuins to ミnput thouรhtifully will give some encourasement to do better.

10. Vaididy and acceotability

CAI programs must teach what they punport to
teach. Sutudents and faculy shoula react favoraoly toward the use of CaI, and educators should perceive its instructional value.
11. Efficiency and effectiveness

Studies report that the mean time for course compietion using CAI is about one-half to two-thirds of the standard time alloted to the course, norean (30) adds that CaI drill and practice mode is consistently effective and that CAI is eriective as a supplement to instruction rather than a suostitute for instruction. The need or instructors and specialists for achievemert data on specific oojectives and for direct assistance with instruction makes the computer a natural ally for instruction.
G. Eeiationshiz betueen CAI and CuI

Instructional utilization of computers is usually subdivided into two categories, namely, computer-assisted instmiction (CAI) and computermanaged instruction (CHI). Splittgerber (48) defines CAI as a teaching process directly involving the computer in the presentation of instructional materials in an interactive mode to provide and control the leaming environment for each individual stident.

CMI is the instructional management system utilizing the computer to direct the entire instruction. The distinct difference between CAI and CMI is that in the CAI mode, the computer functions as a teacher while in the CIII mode the computer functions as a manager. In practice, computer instruction does not dictate the type of instruction found in universities. In figure 1, CAI is illustrated as focusing on the direct teaching of concepts and skills while CMI is illustrated as being a broad concept encompassing the typical modes included in CAI and other forms of instruction which io not directly require the use of the computer. Since CAI does not have to be employed in order to have cmi implemented but ChI is usually required to manage CAI data generated by students, the CAI rectangle is separated by an arroü.
An instructional management sustem involving
Organizinz Curricula and stuüent jata
"onitorins student prosress
こiasnosing and zrescribing
Evaluating leanning outcomes
Eroviaing glarning inEormation for teachers

A teaching process inclucing any one or
A teaching process inclucing any one or
more of the E0IIoming:
more of the E0IIoming:
Ori\l and pracউice
Ori\l and pracউice
Iutorial
Iutorial
Simulation anċ gamins
Simulation anċ gamins
Erobiem-solving
Erobiem-solving
Fi三ure 1．Relationship betileen Cif，O，and traditions instruction．

$$
\begin{aligned}
& \text { MRADIMIONAL MON-OCNEURER-ASSISTED INETZUCTIOM } \\
& \text { Any traditional non-computer teachins } \\
& \text { and/or learring stratesy including: } \\
& \text { iecture } \\
& \text { Group activities } \\
& \text { Question/Enswer } \\
& \text { Iearning centers } \\
& \text { Laboratory instruction } \\
& \text { ごperiential communitij ossea まeucation }
\end{aligned}
$$

Spiftizeroer (48) reports of the following conclusions about CAI:

1. Generally, CAI has the potential to be an effective instructional aid when measured through the results of student achievement. It appears to be more effective in tutorial and drill modes, and also more effective for Low-ability students than for middle or highability students.
2. when students are permitted to proceed at their owm rate, they will generally leam more . rapidly througn CAI than through traditional instructional methods.
3. The retention rate oî material leamed under GAI appears lower than for traditional instructionai aoproaches.
4. CAI is as effective as other means of individualized supplemental instruction if it is utilized as a supplement to regular ciassroom instruction.
5. Despite equipment malfunctions, students ars highly enthusiastic about CAI as an instructional mode.

In table l, are data on presently used major CAI and CNI systems.

Cable 1. Data on the major CAT and CMI systems.

PROJECT	DEVELLOPER	SERVICES
Automated instruc-	New York institute	Evaluation of
tional	of Technology	student progress,
Management System		proscriptions,
(AIMS')		and empirical validation
TYPE - CMI		and optimization
		of instruction
Wisconsin System of	Wisconsin Research	Criterion-referenced
Instructional Manage-	and Development	tests, achievement
ment (WIS-SIM) designed	Center for Cognitive	profiling, diagnosis,
for Individually Guided	Learring	prescription, and instruc-
Instruction (IGE)		tion
TYPE - CMI		
Individually fre-	Learning Research	Diagnoses and
scribed Instruction/	and Development	prescribes. Collects
Management Information	Center at University	and processes information,
System (IPI/Mİ)	of rij.ttsburgh assis-	competence, performance, and
TYPE - CMI	ted by Research for Be'tter Schools	progress of each student
Instructional Manage-	System Development	Assists with pacing,
ment System (IMS)	Corporation South-	grouping sequencing,
TYHE - CNI	west; Regional Lab	and individualization
Program for Learning	American Institutes	Monitoring and
in Accordance with	for Research and	supervising, test scoring,
Heeds (HLMN)	now managed by	diagnosis, prescription,

Table 1 continued

PROJECT	LEVET,OFLS	SLERVICES
TYYE - Clim	Westinghouse Learning Corporation	individualization, inservice for teachers
Interactive Praining	Intexnational	Develops courses,
System (ITS)	Busjness machines	teachers write courses,
TYPE' - CAI	Corporation	any mode of presentations is permitted
Programmed logic for	Unj versity of	Any Cal mode can be
nutomatic Teachnor	Illinois, now	employed, develops courses
uperation (lıfiro)	manasged by Control	and unjts, especially
IYPP - CnI	Lata Corporation	helpiul with simulations and game playing, revision and editins at any time
istanford Project	Stanfurd	Revisions and editing.
TYPis - CAI	University	at any time, but for problemsolving and drill-practice, echools usually contract for services
'fime-shared, Inter-	RIITPRI: Corporation	Revision and editing
active, Computer-Con-		of program, monitorine, and
trolled, Information		evaluating student progress
felevision (PlCCIT)		utilizing all four modes
TYPE - CAI		of CAI

D. Strategy for Developing CAI

A team approach is desired to develop courseware involving content specialists, instructional designers, programmers and evaluators. Dimas (15) suggests the following process of developing courseware:

1. The team members of a given discipline meet for the purpose of determining curricula and lesson priorities. During this first step, the areas within the course are analyzed in order to determine where students are experiencing the greatest difficulty. These areas are assigned a high priority for lesson development, and a decision is made as to whether CAI can alleviate the learning problem or not.
2. Assignments are underiaken by tine facuity for the development of a one or two page scenario. A scenario is an overview of a lesson and should include student objectives, a description of the content, and a pedasogical approach.
3. Scenarios are submitted to team members and criticizec in a group setting. Revisions, which are agreed upon by the team, are incorporated
in the scenzrio. The use of discussion does muen to eliminate false starts on a lesson script, which is三 Erame by frame hard copy view of the iesson, The faculty member uses a fuil sheet of paper to simulate a frame of cis. Answer judging and other information appear at the bottom of the page.
4. A Iesson script is deveioped from the scenario and submitted to the team where it is critiqued in a group seiting. Revisions are made and the script is again discussed by the sroup. The process is repeated until the script is approved by the team members. It should be mentioned thet the discussion vrovides many worthwhile suggestions and a feeing of trust both of which usually con-

5. Upon agprovai of the Iesson script, a computer İile space is assizned and a programmer is provicied.
6. The precise instructions needea to present the lesson script are entered into the computer by the prosramer.
7. The Lesson is criticized by the eeze as portions of the script are zrogrammed. nnce
complete, a written critique of the Lesson is submitted by each member and discussed in a group setting.
8. Revisions which have been agreed upon by the group are incorporated into the lesson by the author and programmer.
y. The Iesson is tested with a few capabie students, data are recorded, and revisions are made.
iv. The iesson is student tested and objective data are obtained.
ii. Using the objective data gathered from the previous step, the Iesson is again revised as needed. This step is repeated as many times as necessary until the Iesson is complete and puiblished.
zven though the team approach to courseware Qevelopment appears to have the greatest potential, Dimas (15) proposes that individual effort in the authoring or programing process should be nurtured wherever possibie because:
9. The programming abiLities of faculty and siaff will be extended.
10. An atmosphere of creativity will be fosterec

OE GE.
3. Facultu hore comitnent to Enstuctioner
improvenent and ho may become aivocstes 0 :
OAI can うe icentifiea.
\therefore Content areas Minere potentiミl usens ョuミst

means of instuuction which maj hare a hifn
payof̉ in terms of student aonievement is
provicied.
6. A means of enliniment for those incividuals
Who would lixe the challerge of starting and
completing the entire process is puovỉed.
The system of coursemare devejomant in any
institution should allow Eaculoy and stảf to become \equiv
part of a oneative and stimulatins process.

IV. The ticcit aitd plato systeit

Rhw PLATO IV system is probably the largest, most heavily funded CAI experiment in the world. Denenberg (13) reports that the original National Science Foundation (NSF) grant of five million dollars and the matchins five million dollars from the State of Illinois have, since 1959, resulted in a veritable river of software and about one-halif dozen hardware sites capable of supporting that software. Two best known approaches will de discussed in this chapter. They are the Time-shared, Interactive, ComputerControlled, Information Television (TICCIT) system and the Programmed Iogic for Automatic Teaching Operations (PLATO).

A. The IICCIT System

The TICCIT system was a small CAI facility which combined minicomputers and television receivers in an instructional system with the display capabilities of color television. Alcerman et al. (I) report that teams on specialists were assembled to produce courseware which aimed at providing a compiete and independent alternative to entire colege courses in selected subjects.

 ごッ révinjo on mini－computers añ other esuiansnt aureaiy avミミiabie For purchase commerciaiiy，the deveiovers of

 Stuclenテs use the Electronic seyooards that accompany the teievision receミvers to interact oith the computer ごJten，Funther，students direct tneまr om instmávion そioug－icovis unique avproach to instmuctionel

Students choose a unit，a difficuly IEve1三〇propriate to their own periormance，ミnc an instmuc－ tional sequence for learnins．

2．Conte：it of tine demonstrations
The TIGCIT program became an integrai part of the
curriculum at some universities. Denenberg (13) reports that in these institutions, students could register for courses and even earn college credits in classes taught primarily by the computer. Instructor involvement varied from direct supervision of all student work to supplementary assistance provided upon stucent request. Instructors in mathematics courses where the department policy set the TICCIT coverage according to curriculum requirements, had responsibility for managing classes sometimes three times the size of usual lecture sections and for advising students on their course progress. All courseware followed the same instructional design, essentially a form of learner control built around hierarchical content structure.

Participanis in this stucy also developed a comprehensive plan for implementing the TICCIT program and a manual for introducing faculty to the system. The TICCIT prosram depended on college faculty to determine its content structure and to revise the initial versions of courseware.

3. Effects of the TICCIT Program

In the 1975-76 academic year, Alderman et al. (I)
stated that in an evaluation of five thousand students
in nearly two hundred sections of target courses, the TICCIT program offered a great opportunity to contrast the results of courses taught by computer with the results of conventional practices. The evaluation concentrated on four aspects of performance namely, course completion rates, student achievement, stuient attitudes and student activities.

The impact of the TICCIT program on course completion rates, defined as the proportion of students enrolled in a course who later fulfill the course's requirements and receive grades with credit was negative in every case except one. For instance, the average completion rate for mathematics courses was 16 percent for TICCIT classes and 50 percent for leoture sections. It appears that the TICCIT program had detrimental effect on the lifelinood that a student would complete the collese requirements for course credit. Students stayed with the prosram, but failed to complete all the lessons required in order to earn college credits.

Students completing a mathematics course on the TICCIT system had higher post-test scores than comparable students in lecture sections. Estimates of the size of significant TICCIT effects indicatec an increase over
the achievement outcomes of conventional mathematics instruction. Student reactions to the TICCIT program were generally favorable. However, viewed in comparison with student attitude toward classroom teaching methods, the affective outcomes of the TICCIT program were often less positive. In mathematics courses, students rated special features of the TICCIT program lower than the classroom counterparts. Further, students in lecture sections reported greater satisfaction with the amount of individual attention given them, than did students in SICCIT classes.

To a great extent, this may have resulted from the high student-instructor ratio in some TICCIT classes. With a class oi comparable size consisted with traditional practices, the attitudes of stucents toward Leaming on the m-COIT system were about the same with those in lecture sections. Indeed, Inglish classes on the TICCI: system supplemented by small discussion groups with an instructor led to more positive stucen attitucies tinan dijd lecture-discussion classes.
Eerhaps the original specifications for the IICCIT program had underestimated the importance of the instructor to stucients.

In considering the impact of the TICCIT program on course completion rates, it was found that any form of self-pace instruction is likely to exert a negative effect on the pace of student leaming. The completion rates in TICCIT mathematics classes were comparable to those found in other sections taught by prosramned instruction. Analyses for achievement results and course completion rates sugsested that those stucients who benefited most from learning on the SICCIT system, were students who were stronger in their suoject matter preparation with students of a similar background in the subject matter, Alderman et al. (I) sugzest that there might be consistent positive results on all aspects of student performance.
B. The FLeTO System

The FLATO (Programmed Logic for Automatic Teaching Operations) system is the CAI system the author has chosen to develop university level calcuius units. The FIATO System is based at the University of Illinois and supports nearly one thousand terminais at dispersed locations and provides each site with a central library of lessons. The use of lessons in the PLATO system depends on its attractiveness to teachers and
stuảents, and appropriateness to speciríc courses.
The ELATO computer-based education is the laneest and perhaps most sophisticatec computer sustem desisned for ecucation. It has cne thousand jerminals connectec to a Control Data Corporation Cyben 73-24 computer pased in Urbana, Illinois. The heaviest concentration of terminals is in Ilinois, but there are many texminals throughout the Unitod States and some in other countries.

Gommuncation bejneen the central computer and ¿ispersed terminais occuns orer telephone lines for ¿istant sites, and micnowaves Eor nearby Iocations. The display screer For a PIATO terminal is a glasma panel. Bacicec by the computins power of the centrai compujer, estimatec at four million instrucijons zer second, the vanel can reiaj dunamic graviics and thereby perform such tasks as illusirating princioles In the physical sciences or simulatinz laboratory experiments. Lessons also inciuce repetitive drills giving students practice in jasic concepts. Students indicate input messages throuzh keysets similar to those on slectric typerriters. Instructors also use PiATO terminals as they develow lessons witten in a special author language called tumor.

Each site for a PLATO terminal can give access to any PiATO lesson stored in the central library. In addition, any user of the PLATO system can commumicate directly with any other user on the system.

1. Context of the demonstrations Of STATO

Alderman et al. (1) reported a study which was conducted in five community colleges in Illinois with a total of 116 terminals. Although PLATO lessons were available in many different sunject areas, the primary thrust of the study was concentrated in accounting, biology, chemistry, English and mathematics. Instructors in the colleges determined how much the system would cost and what lessons would be available to them. The autonomy permitted instructors, was consistent with the developers' goal of making a powerful resource available for education. Generally, instructors integrated PLato lessons into their class curriculum and replaced portions of their own classroom coverage. Even though the PLATO system had anticipated that instructors would develop fIATO lessons by themselves, it soon became necessary for a central staff to coordinate teacher efforts and so avoid redundancy and facilitate dissemination among the colleges. Alderman et al. (1) state that PLATO developers had overestimated
the proportion of a course that would be taught on the system, for instance, less than one-third of student instruction was given in the CAI mode.

2. Effects of the PIATO System

Alderman et al. (1) also mentioned that the PLATO system provided instruction to approximately four thousand students in each semester of the study. Because many instructors agreed to teach a section of a course with PLATO lessons as well as another section of the same course without stucent exposure to the PLaTO system, it was possible to implement a design which was partially balanced for possible instructor effects and college effects.

The basic finding of the evaluation in the areas of student attrition and achievement was neutral. Student exposure to the PLATO system had no consistent impact on attrition. The average completion rate For PLATO answers was 58 percent in contrast to an average of 59 percent for non-PIATO courses. Amone twentythree populations examined for achievement, there were eleven positive PLATO eifects and twelve negative䇇TO effects. The few significant eifects for either outcome could be plausibly explained by instructor

differences.

The impact of the pIATO system on student atiituaies :Was generally favorable. PJATO students snowed significantly more favorable attiticies toward computer-assisted instruction than non-rIATO stucients. Seventy to ninety percent of the students lised the fact that they could mare mistares without embarrassment, that fidTO made helpful comments on their work, that HLATO mare good use of examples and illusirations, that they could take part in their instruction at each step in the lesson, and expressed the desire to take another course in the -IATO system. zighty-eight percent of the students disagreed that using IJATO was dehumanizing or boring. In the comparisons of $\mathcal{H A T O}$ and non-rIATO students, equaliy lange percentages of botin groups of stucients felt challenged to do their worx, thought that they received individual attention, felt free to ask questions and express opinions, often discussed their course material with other students, did not find it difficult to get help when they did not understand the material in their courses, and would recommend their respective courses to their friends. The results tend to reEute some common stereotypes that computer-
assistec Enstruction may have an isolating effect on stucents. Alderman et al. (I) reported that in 177 observations of PLATO sessions, trained Educational Testing Service (Ξ TS) observers noted an increase in contact between students and instructors and between students themselves. The observers rated the students as generally very attentive to their work, relaxed, enthusiastic, and active with the PLATO system. The impact of the FIATC system on instructors was a favorabie one. For instance, 72 to 86 percent of the instructors juciged the number and content of PLATO lessons, the clarity of the material presented and the use of examples and illustrations to be adequate for their students. Instructors did not Derceive the FIATO system as isolating the stidents from them. In faet, 39 percent of the instructors thought that they had more contact with the students because of FiATO, while only 15 percent thought that their contact with students was decreased because of PLATO. About 78 percent of the instructors did not perceive the use of PLATO as decreasing their workload and 39 percent thought that their worixload was increased because of DLATO. Eighty-eight percent of the stucients intended to continue using PLATO in their courses. About 80
to 83 percent of the instructors judged PLATO to have a positive impact on student achievement.

The wide acceptance of the PLATO system without appreciable negative impact on student performance seems consistent with the conditions under winch the study took place. There may have been too little time spent on the PLATO system to affect student achievement in an entire course. In most cases, students spent less than eight hours on the the PLATO system for a course. A number of altemative explanations might account for student's attraction to the system such as the novelty of CAI or the sophistication of the PIATO system.
C. Evaluation of the PLATO System The following are negative aspects of PLATO:

1. PLATO has some hardware and software problems that decrease its effectiveness. The usage of the many terminals at once can cause the system to stop. The Control Data Corporation (CDC) is remedying the situation.
2. A central pedagosical philosophy within the PLATO system is that anyone can teach himself TUTOR and be busily writing lessons for students within a short time. This philosophy
may hold for a very simple CAI program, but the more useful lessons require a degree of expertise not commonly found in many professional programmers.

The positive aspects for which DLATO was chosen as a CAI system to assist in developing the twenty CAI units are:

1. The PLATC system allows individualized instruction. On the PLipO system, each student can proceed at his own speed through the sets of units that comprise parts of the course.
2. ILATO CAI is especially fruitful in the area of drill and practice. Kathematics anc many areas in the physical sciences seem to fit the flato format.
3. The library of existing courseware (programs) is impressive even though there are few Gay units in mathematics at the university level. The special function keys allow rapia, creative anc enjoyable composition of lessons by authors.
4. The interest in the system does not wear off after a lonz period or time.
5. Income from royalties and licensing fees being paid by commercial users of inventions developed for the PIATO system are now providing a substantial return on the investment in PIATO.

Like any other man-made tool. PLATO technology can be used or misused with equal ease. PLATO's potential is deep and broad and ir intellizorntly and humanely used can help people ecucate themselves.

V. DESCRIPTION OF THE CAICULUS UNITS

The first step in the development of the calculus units as illustrated in chapter three, section D, is a preparatory stage which is divided into the following categories:

1. choosing a topic,
2. stating the course objectives,
3. writing the content outline,
4. stating the instructional objectives,
5. obtaining pre-test scores.

Since a discussion of categories 1 and 5 is contained in the third chapter, this chapter will be concerned with categories 2, 3, and 4. In section A, categories 2 and 3 will be discussed while in section E, catiegory 4 wiii be discussed.

A. Eeneral Objeciives

Since Nathematics 121 is a course taught in Iowa State University, the selection of the subject matter in the course has already been mace by the mathematics department. There are two instructional objectives for this course. The first instructional objective is concerned with:

1. creating new and concrete situations that enhance the learming of the material,
2. introducing the students to a more advanced course Mathematics 122 and assisting the students in their applications to their disciplines.

The second instructional objective is that of providing the student with an understanding of calculus frequently employed in mathematics, engineering and the physical sciences such as

1. applying the first and second fundamental theorems of calculus,
2. computing integrals by using formulas,
3. integrating by trigonometric substitutions, by parts, completing the square, by partial fractions, and by powiers of trigonometric functions,
4. computing cross-sectional length, crosssectional area, improper integrals, polar coordinates,
5. writing parametric equations,
6. calculating area in polar coordinates, surface area, and volume of revolution,

These two instructional objectives not only
describe, but also assist in analyzing the tasks that the student is to perform. A task analysis of the goals is conducted by defining the prerequisite behaviors necessary for the student to attain. The identification of each unit of instruction completed the course outline, and helped in defining the objectives of the course.
B. Objectives of Each Unit of Instruction

A task analysis of the twenty instructional units showed more sub-tasks. The following information contains descriptions and instructional objectives of the twenty instructional units.

In Unit 1 , the first fundamental theorem of calculus pertains to the integration of continuous functions in closed intervals. The function could be expressible in terms of polynomials, logarithms, exponentials, trigonometric functions, or any composition of these functions. There is one problem already solved for the student and five problems in which the student is required to fill the blanks to be able to solve the problems.

Upon completion of this unit of instruction, the student should be able to:

1. compute integrals of continuous function in a closed interval,
2. differentiate polynomials, logarithmic functions, exponential functions, trigonometric functions and any composition of these functions,
3. solve all the twenty-five problems at the end of this mit of instruction.

The second unit continues with the second Iundamental theorem of calculus by differentiating an integral. A continuous function $f(x)$ is defined on a closed interval $[a, b]$. Then a student is given a new function $y(x)$ and defined as equal to $\int_{a}^{x} f(t) d t$ for $a \leqslant x \leqslant b$. The function $y(x)$ is said to be differentiable and its derivative is $f^{\prime}(x)$. There are two probiems already solved for the stident and five problems in which the student is required to fill the blanks to be able to solve the problems.

Upon completion of this unit of instruction, the student should be able to:
I. differentiate integrals,
2. set up the function to be differentiated,
3. Solve all the twenty-five problems at the end of this unit of instruction.

Up to the third unit, the method of evaluating has been by the fundamental theorems of calculus. In this unit, eleven formulas will be used to evaluate integrals of common functions. There are two problems already solved for the student and five problems in which the student is required to fill the blanks to be able to solve the problems.

Upon completion of this unit of instruction, the student should be able to:

1. select the right formula to use for each specific problem,
2. recall all eleven formulas,
3. solve all the twenty-five problems at the end of this unit of instruction.

The fourth instructional unit deals with computing integrais of exponentiai and rationai functions. In this unit, attention is given to the integration of three types of functions. There is one problem already solved for the student and five problems in which the student is required to fill the blanks to be able to solve the problems.

Upon completion of this unit of instruction, the student should be able to:

1. select the right formula to use for each
specific problem,
2. solve all the twenty-five problems at the end of this unit of instruction.

The fifth unit is concerned with integration by trigonometric substitutions. Some ten formulas are provided and three illustrations of how three dominant integrands are used in computing integrals. There are three problems in which the student is required to fill the blanks to be able to solve the problems.

Upon completion of this unit of instruction, the student should be able to:

1. select the right formula to use for each specific problem,
2. draw appropriate diagrams to facilitate problem solving,
3. Scive ais the twonty-five problems at the end of this unit of instruction.

The sixth unit considers the method of integrating by parts. The derivation of the method of integration by parts is shown. There is one problem already solved for the student and five problems in which the student is required to fill the blanks to be able to solve the problems.

Upon completion of this unit of instruction, the
student should be able to:

1. separate the integral into two appropriate parts,
2. choose one part to be easily differentiable and the other part to be easily integrable,
3. solve all the twenty-five problems at the end of this unit of instruction.

In the seventh unit, completing the square and integration by completing the square is emphasized. The general quadratic function is rewritten to show the method of completing the square. There is one problem already solved for the student and three problems in which the student is required to fill the blanks to be able to solve the problems.

Upon completion of this unit of instruction, the stucent should be abla to:

1. complete the square,
2. use an appropriate formula in a previous unit of instruction,
3. solve all the twenty-ifive problems at the end of this unit of instruction.

In the eighth unit of instruction, the method of integration by partial fractions is provided. The definition of polynomial and rational function is
mentioned. There is one problem already solved for the student and four problems in which the student is required to fill the blanks to be able to solve the problems.

Upon completion of this unit of instruction, the student should be able to:

1. select the appropriate case for the problem,
2. complete the square,
3. solve all the trienty-five problems at the end of this unit of instruction.

The ninth unit of instruction is concerned with integration of powers of trigonometric functions. The unit lists identities usefill in integrating powers of trigonometric functions. There is one problem already solved for the student and four problems in which the student is required to ficlu the bianins to de able to solve the problems.

Upon completion of this unit of instmuction, the student should be able to:

1. select the right identity on cmibination of identities to use,
2. convert from one identity to another,
3. Solve all the twenty-five problems at the end of this unit of instruction.

The tenth unit of instruction pertains to integration by miscellaneous substitutions. In this unit, four types of substitutions have been provided. There is one problem already solved for the student and three problems in which the student is required to fill the blanks to be able to solve problems.

Upon completion of this unit of instruction, the student should be able to:

1. choose the correct substitution,
2. change integrand to the appropriate form,
3. solve all the twenty-five problems at the end of this unit of instruction.

The eleventh unit of instruction deals with computation of cross-sectional area. The unit develops the are length formula in three forms. There is one problem aiready soived fior the student and three problems in which the student is required to fill the blaniks to be able to solve the problems. Upon completion of this unit of instruction, the student should be able to:
I. select the correct formula to use for each specific problem,
2. differentiate appropriately,
3. substitute in the formula,
4. solve ail the twenty-five problems at the end of this unit of instruction.

In the twelfth unit, computation of cross-sectional area is emphasized. The unit develops a method of calculating the cross-sectional area by the use of an elementary strip. There is one problem already solved for the student and three problems in which the student is required to fill the blanks to be able to solve problems.

Upon completion of this unit of instruction, the student should be able te:

1. make a sketch of the function,
2. draw an elementary strip,
3. write the area required,
4. solve all the twenty-five problems at the end of this unit of instuction.

The thirteenth unit of instruction is an enrichment pertaining to the average of a function over an interval. This unit presents the notion that the area of the rectangle is equal to the area under the graph. There is one problem already solved for the student and three problems in which the student is required to fill the blanks to be able to solve problems. The student, after completing this unit of
instruction, should be able to:

1. write the difference between the intervals,
2. compute the required integral,
3. solve all the twenty-five problems at the end of this unit of instruction.

In the fourteenth unit, improper integrals are emphasized. This unit of instruction deals with two cases of functions that are continuous at a point. There is one problem already solved for the student and three problems in which the student is required to fill the blanks to be able to solve the problems.

After completing this unit of instruction, the student should be able to:

1. select the case to use,
2. Write the limits of integration,

3: solve ail the twoniofinue problems at the end of this unit of instruction.

In the fifteenth unit, polar coordinates are introduced. This unit gives a method of changing from one coordinate system to another. une proolem is solved for the student and three problems in which the student is required to fill the blanks to be able to solve the problems.

Upon completion of this unit of instruction,
the student should be able to:

1. convert from rectangular coordinates to polar coordinates and vice-versa,
2. change polar equations to rectangular equations and vice-versa,
3. solve all the twenty-five problems at the end of this unit of instruction.

The sixteenth unit of instruction is concerned with infinite sequences and series. This unit includes definitions on sequences and sums, and a proof of the convergence of geometric series. There is one problem already solved for the student and three problems in which the student is required to fill the blanks to be able to solve the problems.

Upon completion of this unit of instruction, the student shoula be able to:

1. compute sum of a convergent series,
2. find out if a series is convergent or divergent,
3. Solve all the twenty-five problems at the end of this unit of instruction.

Unit seventeen continues with the area oi polar coordinates. This unit of instruction describes a method of using a sketch to evaluate the area in
polar coordinates. There is one problem already solved for the student and three problems in which the student is required to fill the blanks to be able to solve the problems.

After completing this unit of instruction, the student should be able to:

1. sketch the appropriate diagram,
2. Write the area of a sector or a circle,
3. solve all the twenty-five problems at the end of this unit of instruction.

In the eighteenth unit, the area of a surface of revolation is examined. This unit deals with four different formulas for calculating the area of a surface of revolution. There is one probiem already solved for the student and three problems in which the stucent is required to fill the blains to be able to solve the problems.

After completing this unit of instruction, the student should be able to:

1. select the appropriate formula for the problem,
2. draw a sketch of the area required, if necessary,
3. solve all the twenty-five problems at the end
of this unit of instruction.
Unit nineteen pertains to the volume of a solid of revolution. This unit deals specifically with the disc and shell methods of finding the volume of a solid of revolution. There is one problem already solved for the student, and three problems in which the student is required to fill the blanks to be able to solve the problems.

Upon completion of this unit of instruction, the student should be able.to:

1. sketch an appropriate volume,
2. Write the integral of the volume,
3. solve ail the twenty-five problems at the end of this unit or instruction.

The twentieth unit of instruction is the final sxamination which consists of ail the previous nineteen units. At this final stage, the student should be able to solve all the twenty-five problems provided at the end of this unit of instruction.

VI. DISCUSSION

The CAI units of instruction in calculus described in the preceding chapter can be used in a calculus class in addition to the lecture and demonstration. The twenty units of instruction should be learned in one quarter. However, the option is provided for self-pacing, which allows for the completion of the instructional units according to a student's schedule or motivation. The student can ask questions from the instructor or refer to the class text or any additional supplemetary material.

Many of these ideas, together with observations in this study are discussed in the following section of this chapter. Recomendations for future development of these CaI units on calculus are reflected in section B of this chapter.
A. Observations

The present CAI systems such as TICCIT and PLATO will be superseded by current revolutions in large integration and videodisc which will be improved through new generations of technology for education. Dwyer (16) states that the complexity inherent in human nature drives the relationship
between technology and education. That deep technology is of no importance without a deep view of education.

From the review of literature, it was found that computer systems have been designed to generate equivalent test forms. Therefore, the question is not whether the computer can be used in this way, but, rather, how computer systems can be designed to meet the particular needs of an individualized mathematics program and to enhance the effectiveness of this instruction.

The CAI units in this study consist of the main topics of the course. The first CAI unit was programed in a PIATO terminal at Iowa state Jniversity. About six hundred hours were required to complete programming this CAI unit, while only five hours were required in the preparation of this unit by the method of lecture and demonstration.

Nearly $2 l l$ the students who were introduced to this CAI unit of instruction appeared highly motivated. Some of the students were so interested in this unit that they completed a unit within three days. The more capable students appeared to enjoy CAI because it allowed self-pacing which is lacking in many lecture and demonstration methods. Another positive feature
that was mentioned by the students was the feedback they received during their interaction with the comuter. Student interest was shown when there was a breardown of the computer. They continually inquired when the system was to become operational.

Suggestions from students about portions of the program that could be misunderstood were valuable. Through the analysis of student respenses, clarifying statements were included. The amount of time required to complete a unit of instruction ranged from 50 to 120 minutes, while 45 to 100 percent of the scores were correct. A major limitation encountered in this study was the considerable time required to program the relatively small amount of student contact time at the terminal.

The CAI system used in this stuady, rinato, was developed when the resources of educational, commercial, and government organizations were combinoc. This development had an outcome rare in the history of government support of education. Income from royalties and licensing fees being paid by commercial users of inventions developed for the fLaTO system are now providing taxpayers with a substantial return on their investment in addition to long-term educational
benefits. Stolurow (50) reports that PLATO lessons now show steady improvement in instructional effectiveness.
B. Recommendations

The future of CAI is questionable. on one hard, there is restriction of funds. For example, there are no new projects whose funding is comparable to the funding by the National Science Foundation of the TICCIT and HLATO projects. On the other hand, the commercial sector is developing which means more restricted research. The technological trend toward miniaturization will tend to reduce unit cost due to "chip" technology. This relatively low cost will enable students in many academic disciplines to take advantage of the new powerful tools. If the semiconductor industry keeps up the trend of providing denser memories at a lower cost per bit, then more attractive mini CAI systems will be created so that reliable, secure, and transferable software and courseware are produced.

The first recommendation is that, before the use of fIATO or any CAI system, the student should be well-informed of the capabilities of the CAI system
being utilized. The student should be familiar with sigri-on procedure, the terminal's keyboard, and the computation mode.

The second recommendation is that these CAI units in calculus will be tested in many calculus classes. Since an effective CAI program requires periodic content updating and expansion oî individual features, the curriculum material should be continuaily changed. These further tests can assist the CAI program.

The third recommendation is concerned with the operational management of the PLATO system. There is a definite power hierarchy from student, author, course director to the PLATO project programmer. To be successful, all members must cooperate so that there will be coordination at each step of the process. Although tinis hierarchicai power structure seems to be necessary to ensure some level of security, it shoula not promote elitism.

Finally, CAI has good capabilities in individualizing instruction, doing research on various teaching modes, and developing ways of assisting instructors and authors in the development of instructional materials. If CAI is intelligently and humanely used, it can really help people educate themselves.
VII. sUHIARY

The primary purpose of this study was to develop computer-assisted instruction units in calculus for students at the university level. These CAI units were designed to provide instruction and related practice problems to mathematics, engineering and science students who are enrolled in Mathematics 121 at Iowa State University. The emphasis of this study was on the development of operational CAI units in calculus.

A description of the three main components of a CAI system namely the hardware component, the software component, and the courseware component was given. The facilities of the PIATO terminals at Iowa State University were used for this study. The PLATO system contains a programming mode which an author can use in programming lessons or in conversing with an author.

Since the computer-assisted units in the study are to be used by tine student to supplement the instruction obtained from the traditional lecture and demonstration method, a class text entitied Calculus and Analytic Geometry by Stein (49) was used. The
material in the calculus course called Mathematics 121 is designed to be stuaied in a period of one quarter. The contents of a class test were then divided into twenty suitable CAI units. Each unit contains an explanation of the concepts involved, at least one solved groblem ans twenty-five unsolved problems.

The explanation of the concepts involved in each unit is aimed at providing the student with the tools to work. The solved problem is a detailed illustration of what the author expects of the student in the problems to be solved later. In the three to five partially solved problems, the student completes the blanks shown. With this method, the student learns each step that is required to achieve the desired results. If a wrong answer is filled in the blank, there will be a "wrong" sesponse from the computer. The student can then erase the wrong answer and insert the right answer, go back to previous information to be acquainted with the material, strike a HELP key or ask the instructor for help. If a right answer is filled in the blank, there is a "right" response from the computer and the student can continue learning.

At the end of each unit there are twenty-five multiple-choice problems. The probability of getting
one problem right out of five problems by guessing is 0.2 . These twenty-five problems encompass all the subject matter in each unit. Therefore, the successful completion of these problems enhances the stident's understanding of the materiai.

The final step in the development of the calculus units involved editing and revising the curriculum material. The first CAI unit was programmed on LLATO IV and students remarked that it facilitated their learning of caiculus. Hopefully, with the deveiopment of computers, that will teach a wide variety of subject matter in an eifective manner, the social ills brought on by an unequal distribution of quality education wili be decreased.

Major recommendations resuiting from this study inchude the foliowine:

1. Before the use oi FLATO or any CAI system, the student should be well-informed of the capabilities of the CAI system being utilized.
2. The CAI units in caicuıus developed in this study, will be tested in many ciasses.
3. Research in adapting the CAI system to other aisciplines should be encouraged.

VII．ZIBLICERAPFY

1．Alderman，Donald I．，Appel，Iola J．；Murphy，Richard T．＂DIATO and IICCIT：An Evaluation OE GAI in the Community Collese．＂jaucational Technolosy 18 （April 1978）：40－44．

2．Ayres，Frank，Jr．Schaum＇s Outline Series Theony and Problems of Differential anc Intearal Calculus． 2nd ed．Now Yoria：Hocraw－iill 3ook Comeany，IObt．

3．Jart，Anthony J．；Goodmignt，J．I．；Sall，J．P．；and
 North Carolina：SAS Insti̇tute，Inc．，I976．

4．Зerrey，Dennis D．A Methoc Eor the Use oE Computing
 Sassachusetts：ERIC Document Reprodiction Service， DD 156 206，1977．

5．Borir，Alfred．＂Bachines for Computer－Assisted
 17－19．

6．Eranstad，Dennis K．＂A Computer Aided Instructional Systern For Peachins Formal Languases．＂Ph．D dissertetion，Iova State Univeこsity， 1970.

7．Zunderson，C．Viotor．＂Zesponse Irom TicCIT．＂三ducational Technolosy 18 （April 1078）：4́：

8．Chamoerlain，R．L．，and Jowett，D．The ominaz Programing justem：t Guide for Üsers．Am：es，Io：a： University 300：Store，I969．

9．Computer－Assisted Instruction and the Ieachins of

 ミニニectiveness nf computer－issisted instinnticn in

12. Dav, Jane I. A Course Fhich Used Programminz to Aid Learninz Various Gathematical Conceris. 3elmont, Califomia: छRIC Document Reproduction Service, Ed 081 230, 1973.
13. Denenbers, Stewart A. "A Personal Evaluation of the PIATC System." ACM Siscue Bulletin: Computer Uses in Education 12 (April 1978): 3-10.
14. Dibello, Louis V. Catalogue of Plato Mathematios Lessons for Communi Colleges and Adult Educaition. Urbana-Champaign, Illinois: ERIC Document Reproduction Service, 2 D 128175 , 1975.
15. Dimas, Chris, "A Stratesy for Developina CAI." Educational Technolosy 13 (April 1978): 26-28.
16. Dwyer, T. A. Heuristic Strategies for Usires Computers to Enrich Education. Pitisourgh, Jennsylvania: International J. Han-Machine Etudies, 1974.
17. Flanders, Harley; Korfhase, Robert R.; and Price, Justin J. Galculus. New Yorl: Academic Press, 1970.
18. Glass, Gene V., and Stanley, Julian C. Statistical Methods in Iducation and Psychology. Englewood Clī゙is, He: Jersey: Erentice-Hall, Inc., 1970.

ㄱ․ Kearsley, G. P., and Eunka, S. "Documentation in Computer-3ased Instruction." ACN Sizcue Julletin: computer Uses in Zaucation i3 (January 1979): 3-6.
20. Kelier, Roy F. Constructing Alzorithms: An Introduction to Siructural Prosramine. Duouque, Iowa: Kendail/Kunt Pujiishins Company, Io75.
21. Kieren, Thomas 3 . Research on Computers in Mathematics Education Rescurce Series. Columbus, Ohio: छRID Document Reproduction Service; 50 0? 734. 1973.
22. Kockler, Lois H. "Using Computer-Assisted Instruction in Overcomina Attitude Barriers." Ph.D. dissertation, Lowa state University, 1972.

23．Koistinen，Josephine；Lindberg，Karl；and Hepler， Stexhen．＂A Test Generating System Designed to Facilitate Individualized Instruction in Preparatory Nathematics．＂ACw Sizcue Bulletin：Computer Uses in Education，II（January 1977）：8－13．

24．Kreitzberg，Charles B．，and Shneiderman，Ben． Fortran Prosramming：A Soiral Approach．New York： Harcourt 3race Jovanich Inc．， 1975.

25．Kreysiz，Erwin．Introduction to Differential Geometry and Riemannian Geometry．Toronto： University of Toronto Press， 1968.

26．Iecuyer，Edward J．Meachins a Survey of Hathematics Ior Colleze Students Usine a Programing Lansuage． Springfield，fassachusetts：ZRIC Document Repro－ duction Service， $\operatorname{ID} 156$ 207， 1977.

27．Tagidson，Errol M．＂Issue Overview：Trends in Computer－Assisted Instruction．＂Educationa？ Technology．I8（April 1978）：5－8．

28．Noclain，Donald $\#$ ．＂Develoment of a Computer－ Assisted Insiruction Unitin ミrobability．＂こh．D． dissertation，Iowa ミちate University，Iopo．

29．Hoise，jawin E．Cauculus．Reacing，Wassachuset Adison－Mesley Publishing compari，1067．

 37－39．

31．Nawaz，I．，and Tanveer，S．A．＂Individualized Instruction：The Fromise，Requisi tes and Alterne－ たives．＂三aucetional Technolos 17 （ت゚ebruairy I977）： $22-25$ ．

 Document ミeproduction Senvice，きכ 097，1974．

34．Nie，Norman H．；Full，C．Fadlai；Jenkins，Jean G．， Steinorenner，Karin；and Bent，Dale K．Statistical Packase For the Social Sciences．2nd ed．Tew Yoak： HCGram－Till Book Company，I975．

35．Nohel，John A．，and Erauer，Fred．Qualitiative Theory of Ordinary Differential Equations． Ne：\＃Yonk：i．A．Eenjamin Inc．，1969．

36．Papert，Seymour．Teaching Children to be Hathema－ ticians Versus Teaching About inthematics．Jew Fork：John ifiley and Sons， 1972.

37．＂pesponse from CERI（PTATO）．＂Ėucational Technologi 18 （Apri1 1978）：45．

33．Richardson，Gary I．，and Birkin，Jtanley J．Problem Solvine PT／C：An Introduction for zusiness and the Social Sciences．Jev York：Joñ inley and Sons， 1975．

30．Rudin，Nalter．Peal and Complex Analysis．Tew Yorir： I．cGrav－ت゙ill 3ook Company，1974．
！o．Schreiner，Axel 7 ．＂Math 199 Comuter Calculus－A Report．＂AC！Sizcue Julletin：Computer Uses in三ducation 7 （Juli 1973）：11－16．
4．Sherwood，Bruce A．The Tutor Ianguage．Uriana： Control Data Júucation Company，1977．

42．Silvern，Leonard C．Svstems Enaineerinz Education VI：引rincioles of computer－Assisted Instruction Systems．ios Angeles：Educaiton and Training Consults Cc．，I970．

4．S．Snedecor，Georse W．，and Cochran，William G． $\frac{\text { Statistical hethods．6th ed．Ames，Iowa：The Iowa }}{\text { State University Press，I974．}}$
 want to Develop a Computer－Zased Project？Some Recommerdations to Consider ミirst．＂Educational ㄹechnolosi i9（March 1979）：53－56．

45．Soiesel，Hurray 2. Schaum＇s Outline Series Nheory and Eroblems of Advariced Calculus．New York： STccraw－itil 30ck Company， 2975.
46. Spiegel, Rurray R. Schaum's Outline Series Theory and Eroolems of Probability and Statistics. New York: ilcGraw-Hill Book Company, 1975 .
47. Spiegel, Wurray R. Schaum's Cutine Series Theory and Problems of Statistics. few Yorl: Eceraw-rill Book Company, 10,61.
48. Splittgerber, Fred I. "Computer-Based Instruction: A Revolution in the Dakins?" Educational TechnoIosy 19 (January 1979): 20-25.
49. Stein, Sherman K . Caiculus and Analytic Eeometry. New Yonk, NY: Mocrain-Fill 3ook Company, 1973.
50. Stolurow, Iamrence \therefore. Computer-assistea Instruction. Detroit: American Data Processins inc., I958.
51. Suppes, Painick and Macisen, Elizabeth. "The Historical Fath from Researoh and Development to ODerational Jse of CAI." JCucational Technologr 13 (April 1978): 9-II.
52. Suppes, Patrick, and Vorningstar, Bona. ComputerAssisted Instruction at Stanford, 1056-68: Data,

5う. Suppes, Matrick; Jerman haw; and Brian Dow. Computer-Assisted Instruction: Staniord's 1005-66

54. Tack, Ieland R. "Development of a Student Guided Program in Sjaiistias Using a Small Digital Computer." Fh.D. dissertation, Iowa State University, 1972.
55. Underkofiler, Niliton H . "Computer-Assisted Instruction in College General Education Uathematics."

56. Natson, Faul G. Usinz the Computer in Jiucation. Englewood Clifis, New Jersey: Educational Technolozy Pubiications, 1972.
57. Meinberger, H. 3. A First Course in Partial Differential Equations. Lexingion, Gassachusetis: Kerox CoIIege Puolishing, 1965.
53. Zinn Karl I. "Sources of Information about Compuing in Instruction." Educational Technolosg 18 (April 1978): 29-32.

IX. ACKNOWLEDGMENTS

Many people have contributed significantly to the development of this study, and the author would like to express his gratitude to these individuals.

A special thank you is given to Dr. Ray Bryan for his assistance and support throughout this project and for the leadership he has provided during the past years.

The author is grateful to Collegiate Presbyterian Church for the financial aid provided for the last year. In particular, sincere appreciation is expressed to Rev. Harry Strong, Rev. James Clinefelter, Rev. Edward Beall and Dr. George McJimsey for helping. to make this financial aid possible.

Sincere appreciation is expressed to Dr. Rex Thomas for his counsel which was so highly respected. Gratitude is also extended to him for making computer terminals available for the author's use.

The author is grateful to Dr. Milton Brown, Dr. Clarence Linciani, Dr. Anton īetusii, Dr, James Peake, and Dr. George Kizer for so ably serving as members of his graduate committee.

In addition the author wishes to express his
appreciation for the understanding and encouragement given by his wife, Marie-Claire, who also provided long hours of editing and typing the final manuscript. Finally, the author is grateful to his children, Caroline and Albert, for their patience.
X. APPENDIX A: CALCULUS CAI UNITS
A. Unit 1

The First Fundamental Theorem of Calculus

If f is continuous on $[a, b]$ and if $f=d / d x(F)$ then $\int a^{f}(x) d x=F(b)-F(a)$. F should be expressible in terms of polynomials, logarithms, exponentials, trigonometric functions, their inverses or any composition of these functions. Solved problem:

Find the area bounded by $y=2 \sin x$ the x-axis and between $x=0$ and $x=\pi / 2$.

Solution:

$$
f(x)=2 \sin x \text { is continuous on }[0, \pi / 2]
$$

$f=d / d x(f)$ therefore, $2 \sin x=d / d x(-2 \cos x) . \quad F(x)=-2 \cos x$ Required area $\int_{0}^{T / 2} 2 \sin x d x$
$=2005(T / 2)+2 \operatorname{cosin}=-2(0-1)=2$.

Now try solving the following problems:

$$
\text { 1. } \int_{0}^{1} e^{2 t} d t
$$

Solution:

$$
f(t)=e^{2 t} \text { is continuous on }[0,1]
$$

$f=d / d t(F), e^{2 t}=d / d t(\longrightarrow), P(t)=e^{2 t} / 2$

$$
\int_{0}^{1} e^{2 t} d t=\longrightarrow
$$

therefore, $\int_{0}^{1} e^{2 t} d t=\left(e^{2}-1\right) / 2$
2. $\int_{1}^{2}\left(8 / x^{2}\right) d x$

Solution:
$f(x) \quad 8 / x^{2}$ is continuous on $[1,2]$ $f=d / d x(F), 8 \% x^{2}=d / d x(\longrightarrow), F=-8 ; 3 x^{3}$

$$
\int_{1}^{2} 8 x^{-2} d x=\rightarrow
$$

therefore, $\int_{1}^{2} 8 x^{-2} d x=-8(2)^{-3} / 3+8(1)^{-3 / 3}=7 / 3$
3. $\int \frac{3}{2} x^{3} d x$

Solution:

$$
f(x) \quad x^{3} \text { is continuous on } \quad[\longrightarrow]
$$

f $d / d x(F), x^{3}=d / d x(\rightarrow), F=x^{4} / 4$

$$
\int_{\text {therefore },}^{3} \int_{2}^{3} d x=\longrightarrow
$$

4. $\int_{1}^{e}(7 / x) d x$

Solution:

$$
f(x)=7 / x \text { is continuous on }[1, e]
$$

$$
f=d / d x(F), 7 / x=d / d x(\longrightarrow), F=71 n x
$$

$$
\int_{1}^{e}(7 / x) d x=\longrightarrow
$$

therefore,
$\int_{1}^{e}(7 / x) d x=7 \ln e-7 \ln 1=7$.
5. $\int_{0}^{1} 4 x^{3} \exp \left(x^{4}\right) d x$

Solution:

$$
\begin{aligned}
& f(x)=4 x^{3} \exp \left(x^{4}\right) \text { is continuous on }[\longrightarrow] \\
& f=d / d x(F) \cdot 4 x^{3} \exp \left(x^{4}\right)=d / d x(\longrightarrow), P=\exp \left(x^{4}\right) \\
& \int \frac{1}{0} 4 x^{3} \exp \left(x^{4}\right) d x=e^{1}-e^{0}=e-1
\end{aligned}
$$

HELP:
Remember the differentiation of the following functions:

1. $d / d x(\operatorname{sinax})=a$ cosax, where a is a constant.
2. $d / d x(\operatorname{cosax})=-\operatorname{asinax}$, where a is a constant.
3. $d / d x\left(x^{n}\right)=n x^{n-1}$, where in is a constant,
4. $d / d x\left(e^{a x}\right)=a e^{a x}$, where a is a constant.

B. Unit 2

The second Fundamental Theorem of Calculus

Let f be continuous on the interval $[a, b]$
Let $y(x)=\int_{a}^{x} f(t) d t$ for $a<x \leqslant b$, then y is differentiable and its derivative is f.
$y^{I}(x)=f(x)$ or $d / d x\left(\int_{0}^{x} f(t) d t\right)=f(x)$

Trial problem:

Let $f(t)=t^{3}$ and $y(x)=\int \begin{aligned} & x \\ & a\end{aligned} t^{3} d t$
Find $y^{\prime}(x)$.
Solution:

1. Method A
$y(x)=\int \frac{x}{a} t^{3} d t \quad x^{4} / 4-a^{4} / 4$
$y^{\prime}(x)=d / d x\left(x^{4} / 4-a^{4} / 4\right)=4 x^{3} / 4-0=x^{3}$
therefore, $y^{\prime}(x)=x^{3}$.
2. Method D
$y(x)=\int_{a}^{x} t^{3} d t$
Let $u=x$, the upper limit of integration.
Then $d u / d x=1$.
Let $d y / d u=u^{3}$, then $d y / d u=x^{3}$ since $u=x$.
$y^{\prime}(x)=d y / d x=d y / d u \cdot d u / d x=x^{3}(z)=x^{3}$
Therefore, $y^{\prime}(x) x^{3}$
Since method 2, involves differentiation only,
it is an easier method to solve these problems than
method 1 which may involve functions which are difficult to integrate. Method 2 will therefore be used in solving the problems in this unit.
Now try solving the following problems:
3. If $y(x)=\int \frac{x}{2} t^{4} d t$, find $y^{\prime}(x)$.

Solution:
Let $u=\rightarrow$, the upper limit of integration.
Then $d u / d x=1$
Also let $d y / d u=u^{4}$
Substituting u for $x, d y / d u=\longrightarrow$
$y^{\prime}(x)=d y / d x=d y / d u . d u / d x=\longrightarrow$
therefore $y^{\prime}(x)=4 x^{3}$.
2. If $y(x)=\int \frac{x^{2}}{1} t^{1 / 2} d t$. Find $y^{\prime}(x)$.

Solution:

Let $u=\rightarrow$, the upper limit of integration,
Then $d u / d x=2 x$.
Also let $d y / d u=u^{1 / 2}$
Substituting u for $x^{2}, d y / d u=\longrightarrow$
$y^{\prime}(x)=d y / d x=d y / d u . d u / d x=\longrightarrow$
therefore: $y^{\prime}(x)=2 x^{2}$
3. If $y(x)=\int_{0}^{x} \tan ^{2} t d t$, find $y^{\prime}(x)$.

Solution:
Let $u=\longrightarrow$, the upper limit of integration
$d u / d x=1$
Also let $d y / d u=\tan ^{2} u$
Substituting u for $x, d y / d u=$

$y^{\prime}(x)=d y / d x=d y / d u . d u / d x=\longrightarrow$

$$
\therefore \quad y^{\prime}(x)=\tan ^{2} x
$$

4. If $y(x) \int_{1}^{x^{3}} \sin 3 t d t$, find $y^{\prime}(x)$.

Solution:
Let $u=\longrightarrow$, the upper limit of integration. Then $d u / d x \quad 3 x^{2}$

Also let dy/du $\sin 3 u$
Substituting u for $x^{3}, d y / d u=\longrightarrow$
$y^{\prime}(x)=d y / d x=d y / d u, d u / d x=\longrightarrow$
Therefore, $y^{\prime}(x)=3 x^{2} \sin 3 x^{3}$
5. If $y(x) \int \sqrt{\sqrt{x}} \sqrt{1-t^{3}} d t$, find $y^{\prime}(x)$.

Solution:
Let $u=\rightarrow$, the upper limit of integration.
Then $d u / d x=1 / 2 x^{-1 / 2}$
Also let $d y / d u=\sqrt{1-u^{3}}$
Substituting u for $x^{1 / 2}$, dy/du $=\longrightarrow$
$\mathrm{y}^{\prime}(\mathrm{x})=\mathrm{dy} / \dot{d x}=\mathrm{dy} / \mathrm{du} . \mathrm{du} / \mathrm{dx}=\longrightarrow$
Therefore $y^{\prime}(x)=(\quad(1-x 3 / 2) / x) / 2$.
C. Unit 3

Computing Integrals of by Using Formulas

Up to this unit, the method of evaluating an integral has been by the fundamental theorems of calculus. Now, eleven formulas will be used to evaluata integrals of some common functions.

1. $\int(f+g) d x=\int f d x+\int g d x$
where f and g are functions of x.
2. $\int k f d x=k \int f d x$
where k is any constant and f is a function of x.
3. $\int x^{n} d x=x^{n+1} /(n+1)+c$
where n and c are constants and $n \neq-1$.
4. $\int \sin a x d x=-a \cos a x+c$
where a and C are constants
5. $\int \cos a x d x=\operatorname{asin} a x+C$
where a and C are constants
6. $\int \tan x d x=\ln |\sec x|+C$
where C is a constant
7. $\int \cot x d x=\ln |\sin x|+C$
8. $\int \sec x d x=\ln |\sec x+\tan x|+C$
where C is a constant
9. $\int \csc x d x=\ln |\csc x-\cot x|+c$
where C is a constant
10. $\int \sec ^{2} x d x=\tan x+c$
where C is a constant
11. $\int \csc ^{2} x d x=-\cot x+c$
where C is a constant
A quicir method, of knowing whether the integral
of a function is correct or not, is by differentiating the obtained function. If the original function is obtained, then the integral of the function is correct. e.g. From formula 11 above, differentiate $-\cot x$.
i.e. $d / d x(-\cot x)=d / d x(-\cos x) / \sin x$
$=(\sin x d / d x(-\cos x)-(-\cos x) d / d x) / \sin ^{2} x$
$=(\sin x \sin x+\cos x \cos x) / \sin ^{2} x$
$=\left(\sin ^{2} x+\cos ^{2} x\right) / \sin ^{2} x=1 / \sin ^{2} x=\csc ^{2} x$
therefore, $\int \csc ^{2} x d x=-\cot x+c$.
It is advantageous to be able to choose which formula or combination of formulas to be used. Solved problems

$$
\text { 1. } \int x^{3} d x
$$

For this problem, formula 3 is the most appropriate.
Substituting 3 for n, the result becomes

$$
\int x^{3} d x=x^{3+1}(3+1)+c
$$

therefore, $\int x^{3} d x=x / 4^{4}+c$

$$
\text { 2. } \int 9 x^{4} d x
$$

In this probiem, formula 2 and 3 are the combination
of formulas to use. k is represented by 9 and f is represented by x^{4} in formula 2. Then Formula 3 is used next.
i.e. $\int 9 x^{4} d x=9 \int x^{4} d x=9 x^{4+1} /(4+1)+c$
$=9 x^{5} / 5+c$
therefore, $\int 9 \mathrm{x}^{4} \mathrm{dx}=9 \mathrm{x}^{5} / 5+\mathrm{C}$
Now try solving the following problems:

1. $\int x^{9} d x$

Apply formula 3 to this problem.

$$
\int x^{9} d x=\rightarrow+c
$$

$$
\therefore \quad \int x^{9} d x=x^{4} / 4 .
$$

2. $\int 7 \sin 4 x d x$

Apply formula 2 and formula 4 to this prob sem and replace k by 7 and a by 4.

$$
\int 7 e^{3 x} d x=\rightarrow e^{3 x}+c
$$

therefore, $\int 7 e^{3 x} d x=(7 / 3) e^{3 x}+c$
3. $\int\left(x^{4}+3 x^{3}+6\right) d x$

Apply formula 1 and formula 3 to this problem.

$$
\int\left(x^{4}+3 x^{3}+6\right) d x=\rightarrow+c
$$

therefore, $\int\left(x^{4}+3 x^{3}+6\right) d x=x^{5} / 5+3 x^{4} / 4+6 x+C$
4. $\int \tan 4 x d x$

Apply formula 6 to this problem. The difference between this problem and formula 6 is that there is a figure 4 in this problem which is nonexistent in formula 6. Differentiate $4 x$ with respect to x and the result is 4. Now rewrite the integral to be $\int \tan 4 x d x=\rightarrow \int \tan 4 x .4 d x$.
The constant $1 / 4$ is needed to make the right hand side of the equation equal to the left-hand side of the equation. therefore, $\tan 4 x d x(1 / 4) \tan 4 x .4 d x$ Apply formula 6 and the result becomes $(1 / 4) \int \tan 4 x .4 d x=\longrightarrow+C$ therefore, $\int \tan 4 x d x=(I / 4) \ln |\sec 4 x|+C$.
5. $\int \sec ^{2} t d t$

This probiem is tine same $2 s$ that shown in formula
10, except that in this problem the variable t
replaces the variable x

$$
\int \sec ^{2} t d t=\rightarrow+C
$$

therefore, $\int \sec ^{2} t d t=\tan t+c$

102
D. Unit 4

Computing Integrals of the Type

$$
\int f^{\prime}(x) / f(x) d x, \int a^{x} d x \text { and } \int e^{a x} d x
$$

Having siudied differentiation and elementary integration, it is noticeable that the integration formulas arrived at, are obtained from standard differentiation formulas.
e.g. $d / d x\left(3 x^{7}\right)=21 x^{6}=f^{\prime}(x)$
therefore, $\int f^{\prime}(x) d x=\int 21 x^{6} d x=3 x^{7}=f(x)$
solved problem:
Find $\int 7 x /\left(3+x^{2}\right) d x$
Solution:

$$
\text { Let } I=\int 7 x /\left(3+x^{2}\right) d x
$$

Differentiating the denominator, $f(x)=3+x^{2}$
therefore, $f^{\prime}(x)=2 x, f^{\prime}(x) / f(x)=2 x /\left(3+x^{2}\right)$
Multiply I by an appropriate constant so that the
integnal is equal to i.
therefore, $I=(7 / 2) \int 2 x /\left(3+x^{2}\right) d x=(7 / 2) \ln \left|3+x^{2}\right|+c$
where C is a constant of integration.

Formulas

1.

$$
\int f^{\prime}(x) / f(x) d x=\ln |f(x)|+0
$$

where C is a constant
2. $\int a^{x} d x=a^{x} / \ln a+c, a>0, a \neq 1$
where a and C are constants
3. $\int e^{a x} d x=e^{a x / a+c}$
where a and C are constants
Now try solving the following problems

1. $\int x /\left(x^{2}+4\right) d x$

The denominator in the integral is $f(x)=\longrightarrow$
therefore, $f^{\prime}(x)=\longrightarrow, f^{\prime}(x) / f(x)=\longrightarrow$
Now muitiply this integral by an appropriate constant
so that the integral below is equal to the integral
above.

$$
\int x /\left(x^{2}+4\right) d x=\rightarrow \int 2 x /\left(x^{2}+4\right) d x
$$

The answer is $\rightarrow+c$

$$
\int x /\left(x^{2}+4\right) d x \quad(1 / 2) \ln \left|x^{2}+4\right|+c
$$

2. $\int e^{4 x} d x$

This is a direct application of theorem 3 and
replacing a by 4,

$$
\begin{aligned}
& \int e^{4 x} d x=\rightarrow+c \\
& \int e^{4 x} d x=e^{4 x} / 4+c .
\end{aligned}
$$

3. $\int 7^{5 x} d x$

Differentiate $5 x$ with respect to x and rewrite the integral so that formula 2 can be used.

$$
\begin{aligned}
& \int 7^{5 x} d x=(1 / 5) \int 7^{5 x}(5 d x)=\rightarrow+C \\
& \int 7^{5 x} d x=(1 / 5) 7^{5 x} / \ln 7+c
\end{aligned}
$$

4. $\int x+3 /(x+4) d x$

Divide $x+3$ by $x+4$
$x+3 /(x+4)=1-\longrightarrow$
i.e. $\int(x+3) /(x+4) d x=\longrightarrow+c$
therefore, $\int(x+3) /(x+4) d x=x-\ln (x 4)+C$
5. $\int \sin 2 x /(1+\cos 2 x) d x$

The denominator in the integral is $f(x)=\longrightarrow$
$f^{\prime}(x)=\longrightarrow, f^{\prime}(x) / f(x)=\longrightarrow$
Now multiply this integral by an appropriate constant so that the integral below is equal to the integral above.

$$
\begin{aligned}
& \int \sin 2 x /(1+\cos 2 x) d x= \\
= & \int-2 \sin 2 x(1+\cos 2 x) d x
\end{aligned}
$$

$$
\text { The answer is } \longrightarrow+c
$$

therefore, $\int \sin 2 x^{\prime}(1+\cos 2 x) d x=$ $-(1 / 2) \ln |1+\cos 2 x|+c$
E. Unit 5

Integration by Trigonometric Substitutions

Trigonometric substitutions are usually used for integrands which contain any of these three forms

$$
\sqrt{a^{2}-b^{2} x^{2}}, \sqrt{b^{2} x^{2}-a^{2}} \text { and } \sqrt{a^{2}+b^{2} x^{2}}
$$

First form of substitution:
For $\sqrt{a^{2}-b^{2} x^{2}}$, use $x=(a / b)$ sint, $d x=(a / b) \cos t d t$ therefore, $\left.\sqrt{a^{2}-b^{2} x^{2}}=\sqrt{a^{2}-b^{2}\left(\left(a^{2} / b^{2}\right) \sin 2\right.} t\right)=\sqrt{a^{2}-a^{2} \sin ^{2} t}$
$a \sqrt{1-\sin ^{2} t}=a$ cost.
Second form of substitution:
For $\sqrt{b^{2} x^{2}-a^{2}}$, use $x=(a / b) \sec t, d t=(a / b) \sec t$ tant therefore, $\sqrt{b^{2} x^{2}-a^{2}}=\sqrt{b^{2}\left(\left(a^{2} / b^{2}\right) \sec ^{2} t\right)-a^{2}}=\sqrt{a^{2} \sec ^{2} t-a^{2}}$ $=a \sqrt{\sec ^{2} i-i}=a \tan t$

Third form of substitution

$$
\begin{aligned}
& \text { For } \sqrt{a^{2}+b^{2} x^{2}}, \text { use } x=(a / b) \text { tant, } d t=(a / b) \sec ^{2} t d t \\
& a \sqrt{1 \tan ^{2} t}=a \sec t
\end{aligned}
$$

Some useful formulas:

1. $\int\left(a^{2}-x^{2}\right)^{-1 / 2} d x=\arcsin (x / a)+C$
2. $\int\left(a^{2}+x^{2}\right)^{-1} d x=(1 / a)$ arc $\tan (x / a)+C$
3. $\int 1 / x \sqrt{x^{2}-a^{2}} d x=\operatorname{arcsec}(x / a)+c$
4. $\int\left(x^{2}-a^{2}\right)^{-1} d x=(1 / 2 a) \ln |(x-a) /(x+a)|+c$
5. $\int \perp\left(a^{2}-x^{2}\right) d x=(1 / 2 a) \ln |(a+x) /(a-x)|+c$
6. $\int 1 / \sqrt{x^{2}+a^{2}} d x=\ln \left(x+\sqrt{x^{2}+a^{2}}\right)+c$
7. $\int I / \sqrt{x^{2}-a^{2}} d x=\ln \left|x+x^{2}-a^{2}\right|+c$
8. $\int \sqrt{a^{2}-x^{2}} d x=(1 / 2) x \sqrt{a^{2}-x^{2}}+\left(a^{2} / 2\right) \operatorname{arc} \sin (x / a)+c$
9. $\int \sqrt{a^{2}+x^{2}} d x=(1 / 2) x \sqrt{a^{2}+x^{2}}+\left(a^{2} / 2\right) \ln \left(x+\sqrt{x^{2}+a^{2}}\right)+c$
10. $\int \sqrt{x^{2}-a^{2}} d x=i(1 / 2) x \sqrt{x^{2}-a^{2}}-\left(a^{2} / 2\right) L n\left|x+\sqrt{x^{2}-a^{2}}\right|+c$

Now try solving the following problems:

1. $\int\left(\sqrt{81-16 x^{2}}\right) / x d x$

Solution:

Oise tine first form of sinistitution.
$x=9 / 4 \sin t, d x=$ \qquad
$\sqrt{8 I-16 x^{2}}=\longrightarrow$
$\sqrt{81-16 x^{2}}=9$ cost
$\int\left(\sqrt{8 \perp-16 x^{2}}\right) / x d x=\int 9$ cost $\left./(9 / 4) \sin t d t\right)$
$=9 \int\left(1-\sin ^{2} t\right) / \sin t=9 \int($ csct-sint $) d t=\longrightarrow$
$=\left(\sqrt{\left.81-16 x^{2}\right) / x} d x=9 \ln \mid\right.$ csct-cot $t \mid+3 \cos t+c$

Substitute $x=(9 / 4)$ sin t. The right argled triangle below will be of some use.

$\int \sqrt{81-16 x^{2} / d} d x=\longrightarrow$
therefore, $\int \sqrt{81-16 x^{2}} / x d x=9 \ln \left|9 / 4 x-\left(81-16 x^{2}\right) / 4 x\right|$
$+\left(\sqrt{81-16 x^{2}}\right) / 3$
2. $\int x^{2} / \sqrt{x^{2}-16} d x$

Use the second form of substitution
$x=4$ sect; $d x=\longrightarrow$

$$
\begin{aligned}
& \sqrt{x^{2}-16}=4 \tan t \\
& \int x^{2} / \sqrt{x^{2}-16} d x=\int 16 \sec ^{2} t(4 \sec t \tan t) / 4 \tan t d t \\
& \int 16 \sec ^{3} t d t=16 \int \sec ^{3} t d t=\rightarrow
\end{aligned}
$$

$$
\text { Substitute } x=4 \text { sect the right angle triangle below }
$$

will be of some use.

$$
\int x^{2} / \sqrt{x^{2}-16} d x=\longrightarrow
$$

therefore, $x^{2} / \sqrt{x^{2}-16} d x$
$=x \sqrt{x^{2}-16 / 2}+8 \ln \left|x / 4+\sqrt{x^{2}-16 / 4}\right|+c$
3. $\int 7 /\left(x^{2} \sqrt{9+x^{2}}\right) d x$

Solution:
Use the third form of substitution

$$
x=3 \tan t, d x=\longrightarrow
$$

$$
\sqrt{9+x^{2}}=3 \text { sect }
$$

$$
\int 7 /\left(x^{2} \sqrt{9+x^{2}}\right) d x=\int 21 \sec ^{2} t / 9 \tan ^{2} t(3 \sec t) d x
$$

$$
=? \int \sec t / 9 \tan ^{2} t d t
$$

$$
=(7 / 9) \int \sin ^{-2} t \cos t d t=\longrightarrow
$$

$$
\int 7 /\left(x^{2} \sqrt{9+x^{2}}\right) d x=-(7 / 9) / \sin t+c
$$

Substitute $x=3$ tant. The right angle below will be of some use.

$$
\int 7 /\left(x^{2} \sqrt{9+x^{2}}\right) d x=\longrightarrow
$$

therefore, $\int 7 /\left(x^{2} \sqrt{9+x^{2}}\right) d x=-7 \sqrt{9+x^{2}} / 9 x+c$

111
F. Unit 6

Integration by Parts

Theorem:

If u and v are differentiable functions of x

$$
d(u v)=u d v+v d u
$$

i. e. udv $d(u v)-v d u$

Integrating, $\int u d v=u v-\int v d u$
To use the method of integration by parts, the given integral must be separable into two parts, u and dv. u should be chosen so that it is easily differentiable and dv must be chosen so that it is easily integrable.

Solved problem:
Find $\int x e^{x} d x$
Solution:
x is easily differentiable and $e^{x} d x$ is easily
integrable.
Let $u=x$ and $d v=e^{x} d x$
therefore, $d u=d x$ and $v=e^{x}$
From the theorem of integration by parts,

$$
\int x e^{x} d x=x e^{x}-\int e^{x} d x=x e^{x}-e^{x}
$$

therefore, $\int x e^{x} d x=e^{x}(x-1)+C$
Now try solving the following problems

1. Evaluate $\int 12 x \cos x d x$
x is easily differentiable and $12 \cos \mathrm{dx}$ is easily integrable.

Let $u=\rightarrow$ and $d v=\rightarrow$
$\mathrm{du}=\rightarrow, \mathrm{v}=\longrightarrow$
From the theorem of integration by parts,
therefore, $\int 12 x \cos x d x=\rightarrow-\int \rightarrow$
therefore, $\int 12 x \cos x d x=12 x \sin x+12 \cos x+c$
2. Evaluate $3 \int \operatorname{arc} \sin x d x$

3arc sinx is easily differentiable-and $d x$ is easily
integrable.
Let $u=\rightarrow$ and $d v=\longrightarrow$

$$
d u=\rightarrow \quad, \quad \nabla=\rightarrow
$$

From the theorem of integration by parts,
$3 \int \operatorname{arc} \sin x d x=\rightarrow-\int \rightarrow$
3 arc $\sin x d x \quad 3 x a r c \sin x-\int 3 x / \sqrt{1-x^{2}} d x$
To evaluate the integrai on the right,
substitute $t^{2}=1-x^{2}$, then $2 \hbar む 亢=-2 x d x \cdot t d t=\longrightarrow$
$-\int 3 x / \sqrt{1-x^{2}}-\int-3 t / t d t=\int 3 d t=3 i+c=3 \sqrt{1-x^{2}}+c$
therefore, \int 3arc sinx $d x=\longrightarrow$
$\int 3 \operatorname{arc} \sin x d x=3 x a r \sin x+3 \sqrt{1-x^{2}}+c$
3. Evaluate $9 \int x^{2} \ln x d x$

91nx is easily differentiable and $x^{2} d x$ is easily integrable.

Let $u=\rightarrow$ and $d v=\longrightarrow$
therefore, $d u=\rightarrow \quad, v=\longrightarrow$
From the theorem of integration by parts,
$9 \int x^{2} \ln x d x=\rightarrow-\int \rightarrow$
$9 \int x^{2} \ln x=3 x^{3} \ln x-3 \int x^{2} d x$

$$
=3 x^{3} \ln x-\longrightarrow
$$

therefore, $9 \int x^{2} \ln x d x=3 x^{3} \ln x-x^{3}+C$
4. Evaluate $2 \int e^{x} \cos x d x$

Let $I=2 \int e^{x} \cos x d x$
$2 e^{X}$ is easily differentiable and cos x $d x$ is easily
integrable.
Let $u=\longrightarrow$ and $d v=\longrightarrow$
therefore, du $=\longrightarrow, v=\longrightarrow$
From the theorem of integration by paris,
$I=\longrightarrow-\int \rightarrow$
I $2 e^{x} \sin x-2 \int e^{x} \sin x d x . \ldots(1)$
In the integral $2 \int e^{x} \sin x d x, 2 e^{x}$ is easily differentiable and sin $d x$ is easily integrable.

Let $u=\longrightarrow$ and $d v=\longrightarrow$
therefore, du $=\longrightarrow, \bar{\nabla}=\longrightarrow$
From the theorem of integration by parts,
$2 \int e^{x} \sin x d x=-\int \longrightarrow$
$2 \int e^{x} \sin x d x=-2 e^{x} \cos x+\int 2 e^{x} \cos x d x$
i.e. $2 \iint^{x} \sin x=-2 e^{x} \cos x+I$

Substitute equation (2) in equation (1)
$I=\longrightarrow$
$I=2 e^{x} \sin x+2 e^{x \cos } x_{-I}$
$2 I=2 e^{x} \sin x+2 e^{x} \cos x$
$I=2\left(e^{x} \sin x+e^{x} \cos x\right) / 2 e^{x} \sin x+e^{x} \cos x+C$
therefore, $2 \int e^{x} \cos x d x=e^{x}(\sin x+\cos x)+c$.
5. Evaluate $\int 15 x \sqrt{1+x} d x$

Let $I=15 \int x \sqrt{1+x} d x$
$15 x$ is easily differentiable and $\sqrt{1+x}$ is easily
integrable.
Let $u=\longrightarrow$ and $d v=\longrightarrow$

$$
d u=\rightarrow \quad, v=\rightarrow
$$

From the theorem of integration by parts
$I=\longrightarrow \quad-\int \longrightarrow$
$I=10 x(1+x)^{3 / 2}-10 \int(1+x)^{3 / 2} \mathrm{dx}$
Integrate $10 \int(1+x)^{3 / 2} \mathrm{dx}$.
$I=10 x(1+x)^{3 / 2}-4(1+x)^{5 / 2}+c$
therefore, $\int 15 x \sqrt{1+x} d x=10 x(1+x)^{3 / 2}-4(1+x)^{5 / 2}+C$

116

G. Unit ?

Completing the Square and Integration

 by Completing the Square.To complete the square of the function $f(x)=$ $a x^{2}+b x+c$, rewrite $f(x)$ as
$a x^{2}+b x+c=a(x+(b / 2 a))^{2}+\left(c-\left(b^{2} / 4 a\right)\right)$
Reduce the right hand-side of the equation.
$a(x+(b / 2 a))^{2}+\left(c-\left(b^{2} / 4 a\right)\right)=a\left(x^{2}+2 b x / 2 a+b^{2} / 4 a^{2}\right)+c-b^{2} / 4 a$
$=a x^{2}+b x+\left(b^{2} / 4 a\right)+c-\left(b^{2} / 4 a\right)$
$=a x^{2}+b x+c$
$a x^{2}+b x+c=a(x+b / 2)^{2}+\left(c-b^{2} / 4 a\right)$ is an identity.

Solved problem

Complete the square of $6 x^{2}+2 x+9$ and
integrate $\int 1 /\left(6 x^{2}+2 x+9\right) d x$
Solution:
In this problem, substitute a for $6, b$ for 2
and c for 9, in the identity above.
$6 x^{2}+2 x+9=6(x+2 / 2(6))^{2}+(9-4 / 4(6))$
$=6(x+(2 / 6))^{2}+(9-(i / 6))$
$=6(x+(1 / 6))^{2}+53 / 6$
therefore, $6 x^{2}+2 x+9=6\left(x+(1 / 61)^{2}+53 / 6\right.$.

$$
\int 1 /\left(6^{2}+2 x+9\right) d x=\int 1 /\left(6(x+(1 / 6))^{2}+53 / 6\right)
$$

Use the method of substitution used in Unit 5 .
Let $u=\sqrt{6}(x+(1 / 6))$ then $d u=\sqrt{6} d x$

The integral becomes $1 / \sqrt{6} \int 1 /\left(u^{2}+53 / 6\right)$
From the formulas in Unit 5
$(1 / \sqrt{6}) \int 1 /\left(u^{2}+53 / 6\right) d x=(1 / \sqrt{6}) \cdot(\sqrt{6} / \sqrt{53})$ arc $\tan \sqrt{6} u / \sqrt{53}+c$
$=(1 / \sqrt{53})$ arc $\tan \overline{6} \cdot \overline{6}(x+1 / 6) / \sqrt{53}+c$
$=(1 / \sqrt{53})$ arc $\tan 6(x+1 / 6) / \sqrt{53}+C$
therefore, $\int \frac{1}{1}\left(6 x^{2}+2 x+9\right) d x$
$=(1 / 53)$ arc $\tan 6(x+1 / 6) / \sqrt{53}+c$
Now try solving the following problems.
I. Find $\int 1 /\left(x^{2}+2 x+2\right) d x$

Solution:

First complete the square of the denominator.
From the identity for completing squares
$x^{2}+2 x+2=\longrightarrow$
$x^{2}+2 x+2=(x+1)^{2}+1$
$\int\left(x^{2}+2 x+2\right)^{-1} d x=\int\left((x+1)^{2}+1\right)^{-1} d x$
Let $u=x+1, d u=\rightarrow$

$$
\int 1 /((x+1)+1) d x=\int 1 /\left(u^{2}+1\right) d x
$$

Use the trigonometric substition $u=\tan t$ as shown in Unit 5.

$$
\begin{aligned}
& \int\left(u^{2}+1\right)^{-1} d u=\longrightarrow \\
& \int\left(u^{2}+1\right)^{-1} d u=\arctan u=\arctan (x+1)+C
\end{aligned}
$$

therefore, $\int\left(x^{2}+2 x+2\right)^{-1} d x=$ arc $\tan (x+1)+C$.
2. Evaluate $\int 1 /\left(3 x^{2}+6 x+1\right) d x$

Solution:

First complete the square of the denominator. From the identity of completing squares,
$3 x^{2}+6 x+1=\longrightarrow$
$3 x^{2}+6 x+1=3(x+1)^{2}+1 / 4$
Let $u=\sqrt{3}(x+1), d u=\longrightarrow$
$\int 1 /\left(3 x^{2}+6 x+1\right) d x=1 / \sqrt{3} \int 1 /\left(u^{2}+1\right) d u$
Use the trigonometric substitution $u=\operatorname{tant}$ as shown in Unit 5.
$(1 / \sqrt{3}) \int\left(u^{2}+1\right)^{-1} d u=\longrightarrow$
$\left.(1 / \sqrt{3}) \int 1 / u^{2}+1\right) d u=(1 / \sqrt{3})$ arc $\tan u$
$=(1 / \sqrt{3}$ arc $\operatorname{tar} \sqrt{3}(x+1)+c$.
3. Find $\int 1 /\left(4 x^{2}+2 x-3\right) d x$

Solution:

First complete the square of the denominator.
From the identity of completing squares,
$4 x^{2}+2 x-3=\longrightarrow$
$4 x^{2}+2 x-3=4(x+(1 / 4))^{2}-13 / 4$
Let $u=2(x+1 / 4), d u=$
$\int 1 / \sqrt{4 x^{2}+2 x-3} d x=(1 / 2) \int 1 / \sqrt{u^{2}-13 / 4} d u$
Use formula $?$ in Unit 5.

$$
1 / 2 \sqrt{u^{2}-13 / 4} d u=
$$

$\int 1 / 2 \sqrt{u^{2}-13 / 4} d u=(1 / 2) \ln \left|u+u^{2}-a^{2}\right|+c$
$=(1 / 2) \ln \left|2(x+1 / 4)+\sqrt{4(x+1 / 4)^{2}-13 / 4}\right|+C$
therefore, $\int\left(4 x^{2}+2 x-3\right) d x$
$(1 / 2) \ln \mid 2(x+1 / 4)+\sqrt{4(x+1 / 4)^{2}-13 / 4}+C$.
H. Unit 8

Integration by Partial Fractions

A polynomial is a function of the form $a_{0}+a_{1} x+a_{2} x^{2}+\cdots+a_{n} x^{n}$. A rational function is a function of the form $f(x) / g(x)$ where $f(x)$ and $g(x)$ are polynomials. $f(x) / g(x)$ is called proper if the degree of $f(x)$ is less than the degree of $g(x)$. $f(x) / g(x)$ is called improper if the degree of $f(x)$ is greater than the degree of $g(x)$.

To reduce $f(x) / g(x)$ where $f(x)$ and $g(x)$ are Dolymomials, as the sum of partial fractions, the following cases should be considered:

Case 1. If the degree of $f(x)$ is greater than or equal to the degree of $g(x)$, divide $g(x)$ into $f(x)$ to obtain a quotient $g(x)$ and a remainder $r(x)$ Then $f(x) / g(x)=q(x)-r(x) / q(x)$.

Case 2. If the degree of $f(x)$ is less than the degree of $g(x)$, then factorize $g(x)$ to factors that are irreducible. In case $a x+b$ is a linear factor occuring n times in $g(x)$, then there corresponds a sum of n partial fractions of the form $f(x) / g(x)=f(x) /(a x+b)^{n}$
$=A_{1} /(a x+b)+A_{2} /(a x+b)^{2}+\ldots+A_{n} /(a x+b)^{n}$
where $a, b, A \cdot s$ and B 's are constants.
In case $g(x)=a x^{2}+b x+c$ and $f(x) / g(x)$ is a proper
function then
$f(x) / g(x)=\left(A_{1} x+B_{1}\right) /\left(a x^{2}+b x+c\right)$
where a, b, c, A_{1} and B_{I} are constants
If $a x^{2}+b x+c$ appears n times in the factorization of $g(x)$, then
$f(x) / g(x) f(x) /\left(a x^{2}+b x+c\right)^{n}$
$=\left(A_{1} x+B_{1}\right) /\left(a x^{2}+b x+c\right)+\left(A_{2} x+B_{2}\right) /\left(a x^{2}+b x+c\right)^{2}$
$\cdots+\left(A_{n} x+B_{n}\right) /\left(a x^{2}+b x+c\right)^{n}$
where $a, b, c, A ' s$ and B's are constants.
solved problem:
Decompose ($7 x-1$)/(x-I) $(x+2)$ into partial fractions.
Solution:

$$
\text { Write }(7 x-1) /(x-1)(x+2)=A /(x-1)+B /(x+2)
$$

where A and B are constants to be determined.
Multiply through by $(x-1)(x+2)$.
$7 x-I=A(x+2)+B(x-1) \ldots \ldots(1)$
Let $x=-2$ in equation 1 .
$7(-2) \div \dot{7}=\mathrm{E}(-3$
$-15=B(-3)$
$B=5$
Let $x=1$ in equation 1 .
7(1)-1=A(3)
$6=A(3)$
$\mathrm{A}=2$

Therefore,

$(7 x-1) /(x-1)(x+2)=2 /(x-1)+5 /(x+2)$
Now try solving the following problems.

1. Express $(3 x+1) /\left(x^{2}+2 x-3\right)$ as a sum of partial

fractions

Solution:

$$
\text { Write }(3 x+1) /\left(x^{2}+2 x-3\right)=(3 x+1) /(x+3)(x-1)=\rightarrow+\rightarrow
$$

$(3 x+1) /(x+3)(x-1)=A /(x+3)+B /(x-1)$
where A and B are constants to be determined.
Multiply through by $(x+3)(x-1)$.
$3 x+1=\longrightarrow+\longrightarrow$
$3 x+1=A(x-1)+B(x+3)$
Let $x=1$ in equation 2 .

$$
\begin{gathered}
3(1)+1=A(1-1) B(1+3) \\
B=\longrightarrow \\
B=1
\end{gathered}
$$

Let $x=-3$ in equation 2 .

$$
\begin{aligned}
3(-3)+1 & =A(-3-1)+B(-3 \quad 3) \\
A & =\longrightarrow \\
\dot{A} & =2
\end{aligned}
$$

$3 x+1 /\left(x^{2}+2 x-3\right)=\longrightarrow+\longrightarrow$
therefore, $(3 x+1) /\left(x^{2}+2 x-3\right)=2 /(x+3)+1 /(x-1)$.
2. Decompose $(6 x+4) /\left(9-x^{2}\right)$ into partial fractions.

Solution:

$$
\begin{aligned}
& \text { Write }(6 x+4) /\left(9-x^{2}\right)=(6 x-4) /(3-x)(3+x)=\rightarrow+\longrightarrow \\
& (6 x+4) /\left(9-x^{2}\right)=A /(3-x)+B /(3+x)
\end{aligned}
$$

where A and B are constants to be determined.
Multiply through by (3-x)(3+x).
$6 x+4=\longrightarrow+\longrightarrow$
$6 x+4=A(3+x)+B(3-x)$
Let $x=-3$ in equation 3 .
$6(-3)+4=A(3-3)+B(3+3)$

$$
\begin{aligned}
& B=\longrightarrow \\
& B=-7 / 3
\end{aligned}
$$

Let $x=3$ in equation 3 .
$6(3) \div 4=A(3+3)+B(3-3)$

$$
\begin{aligned}
& A=\longrightarrow \\
& A=11 \prime^{\prime} 3 \\
&(6 x+4) /\left(9-x^{2}\right)=11 /(3(3-x)) \quad-7 /(3(3-x))
\end{aligned}
$$

3. Express $\left(2 x^{2}+7\right) /\left(2 x^{2}+18 x+28\right)$ as a sum of partial fractions.

Solution:
Since the degree of the numerator is equal to the degree of the denominator, divide the numerator by the denominator.
$2 x^{2} 18 x-28 \frac{1}{2 x^{2}+7}$

$$
\frac{2 x^{2}+18 x+28}{-13 x-21}
$$

$\left(2 x^{2}+7\right) /\left(2 x^{2}+18 x+28=1+(-18 x-21) /\left(2 x^{2}+18 x+28\right)\right.$
Write
$(-18 x-21) /\left(2 x^{2}+18 x+28\right)=-3(6 x+7) /\left(2\left(2 x^{2}+18 x+28\right)\right)$
Therefore, $\left(2 x^{2}+7\right) /\left(2 x^{2}+18 x+28\right)$

$$
\begin{equation*}
=1-3(6 x+7) /\left(2\left(x^{2}+9 x+28\right)\right. \tag{4}
\end{equation*}
$$

Write

$$
\begin{aligned}
& (6 x+7) /\left(x^{2}+9 x+28\right)=(6 x+7) /(x+2)(x+7)=\longrightarrow+\longrightarrow \\
& (6 x+7) /(x+2)(x+7)=A /(x+2)+B /(x+7)
\end{aligned}
$$

where A and B are constants to be determined.
Mutiply through by $(x+2)(x+7)$.
$6 x+7=\longrightarrow+\longrightarrow$
$6 x+7=A(x+7)+B(x+2)$
Let $x=-7$ in equation 5
$6(-7)+7=A(-7+7)+B(-7+2)$
$-35=B(-5)$

$$
B=\longrightarrow
$$

$$
B=7
$$

Let $x=-2$ in equation 5
$6(-2)+7=A(-2+7)+B(-2+2)$

$$
\begin{aligned}
& A=\longrightarrow \\
& A=-1
\end{aligned}
$$

$(6 x+7) /(x+2)(x+7)=\longrightarrow+\longrightarrow$
$(6 x+7) /(x+2)(x+7)=-1 /(x+2)+7 /(x+7)$
Substitute equation 6 in equation 4.
$\left(2 x^{2}+7\right) /\left(2 x^{2}+18 x+28\right)=\longrightarrow+\longrightarrow-\longrightarrow$
Therefore,
$\left(2 x^{2}+7\right) /\left(2 x^{2}+18 x+28\right)=1+3 /(2(x+2))-21 /(2(x+7))$
4. Evaluate $\int 8 /\left(16-x^{2}\right) d x$

Solution

Write $\left.8 /\left(16-x^{2}\right)=8 /(4-x) \times 4+x\right)$
$8 /(4-x)(4+x)=A /(4-x)+B /(4-x)$
where A and B are constants to be determined.
mutiply through by ($4-x$) ($4+x$).
$8=A(4+x)+B(4-x)$
Let $x=-4$ in equation 7
$8=A(4-4)+B(4+4)$
$B=\longrightarrow$
$B=1$
Let $x=4$ in equation 7
$8=A(4+4)+B(4-4)$
$A=\longrightarrow$
$A=1$
$8 /\left(16-x^{2}\right)=\longrightarrow+\longrightarrow$
$8 /\left(16-x^{2}\right)=1 /(4-x)+1 /(4+x)$

Integrating,

$$
\begin{aligned}
& \int 8 /\left(16-x^{2}\right) d x=\int\left((4-x)^{-1}+(4+x)^{-1}\right) d x=\longrightarrow+c \\
& \int^{1} 8 /\left(16-x^{2}\right) d x=-\ln (4-x) \ln (4 x)+C \\
& =\ln (4+x) / 4-x)+C \\
& \int 8 /\left(16-x^{2}\right) d x=\ln (4+x) /(4-x)+C
\end{aligned}
$$

I. Unit 9

Integration of Powers of Trigonometric Functions

The following identities are useful in integration of Powers of Trigonometric Functions.

1. $\sin ^{2} x+\cos ^{2} x=1$
2. $1+\tan ^{2} x=\sec ^{2} x$
3. $1+\cot ^{2} x=\csc ^{2} x$
4. $\cos 2 x=\cos ^{2} x-\sin ^{2} x$
5. $\cos 2 x=2 \cos ^{2} x-1$
6. $\cos 2 x=1-2 \sin ^{2} x$
7. $\sin 2 x=2 \sin x \cos x$
8. $2 \sin x \cos y=\sin (x-y)+\sin (x+y)$
9. $2 \sin x$ sin $y=\cos (x-y)-\cos (x+y)$
10. $2 \cos x \cos y=\cos (x-y)+\cos (x+y)$

Solved problem
Evaluate $\int\left(\cos ^{2} x-\sin ^{2} x\right) d x$
Solution:
Use identity 4. $\cos ^{2} x-\sin ^{2} x=\cos 2 x$
$\int\left(\cos ^{2} x-\sin ^{2} x\right) d x=\int \cos ^{2} x d x=(1 / 2) \sin 2 x+C$
Therefore,
$\int\left(\cos ^{2} x-\sin ^{2} x\right) d x=(1 / 2) \sin 2 x+C$
Now try solving the following problems.

1. Evaluate $\int 72 \sin ^{3} 3 x \cos ^{5} 3 x d x$

Solution:

$$
\begin{aligned}
& \sin ^{3} 3 x \cos ^{5} 3 x=\sin ^{2} 3 x \sin 3 x \cos ^{5} 3 x \\
= & \left(1-\cos ^{2} 3 x\right) \sin 3 x \cos ^{5} 3 x \\
= & \sin 3 x \cos ^{5} 3 x-\sin 3 x \cos ^{7} 3 x
\end{aligned}
$$

Use the formula that $\int(f(x))^{n} f(x) d x=(f(x))^{n+1} /(n+1)$
Therefore, $\int 72 \sin ^{3} 3 x \cos ^{5} 3 x d x=\int \longrightarrow$
$72 \int \sin ^{3} 3 x \cos ^{5} 3 x d x$
$=72 \int\left(\cos ^{5} 3 x \sin 3 x-\cos ^{7} 3 x \sin 3 x\right) d x$
Hence,
$\int 72 \sin ^{3} 3 x \cos ^{5} 3 x d x=-4 \cos ^{6} 3 x+3 \cos ^{8} 3 x+c$.
2. Evaluate $\int 15 \csc ^{6} x d x$

Solution:

$15 \csc ^{6} x=15 \csc ^{2} x \csc ^{4} x=15 \csc ^{2} x\left(1+\cot ^{2} x\right)^{2}$
$=15 \csc ^{2} x\left(1+2 \cot ^{2} x+\cot ^{4} x\right)$
$=15 \csc ^{2} x+30 \cot ^{2} x \csc ^{2} x+15 \cot ^{4} x \csc ^{2} x$
Use the formula that states that

$$
\int(f(x))^{n} f^{\prime}(x) d x=(f(x))^{n+1} /(n+1)+c
$$

Hence, $\int 15 \csc ^{6} x \mathrm{dx}$

$$
\begin{aligned}
& \int\left(15 \csc ^{2} x+30 \cot ^{2} x \csc ^{2}+15 \cot ^{4} x \csc ^{2} x j d x\right. \\
& \int 15 \csc ^{6} x d x=-15 \cot x-10 \cot ^{3} x-3 \cot ^{5} x+C
\end{aligned}
$$

3. Evaluate $\int 4 \cot ^{3} 2 x d x$

Solution:

$$
\cot ^{3} 2 x=\cot 2 x \cot ^{2} 2 x=\cot 2 x\left(\csc ^{2} 2 x-1\right)
$$

$=\cot 2 x \csc ^{2} 2 x-\cot 2 x$
Use the formula that states that

$$
\int(f(x))^{n_{f}} f^{\prime}(x) d x=(f(x))^{n+I} /(n+1)+c
$$

Hence,

$$
\begin{aligned}
& \int 4 \cot ^{3} 2 x d x \int 4\left(\cot 2 x+\cot ^{2} 2 x-\cot 2 x\right) d x=\longrightarrow+c \\
& \int 4 \cot ^{3} 2 x d x=-\cot ^{2} 2 x+\ln |\csc 2 x|+c
\end{aligned}
$$

4. Evaluate $\int 3 \tan ^{4} x d x$

Solution:

$$
\begin{aligned}
& \tan ^{4} x=\tan ^{2} x \tan ^{2} x=\tan ^{2} x\left(\sec ^{2} x-1\right) \\
= & \tan ^{2} x \sec ^{2} x-\tan ^{2} x \\
= & \tan ^{2} x \sec ^{2} x-\left(1-\sec ^{2} x\right) \\
= & \tan ^{2} x \sec ^{2} x-1 \sec ^{2} x
\end{aligned}
$$

Use the formula that

$$
(f(x))^{n_{f}^{\prime}}(x) d x=(f(x))^{n+1} /(n+1)+C
$$

Therefore,

$$
\begin{aligned}
& \int 3 \tan ^{4} x d x=\left(3 \tan ^{2} x \sec ^{2} x-3+3 \sec ^{2} x\right) d x=\longrightarrow+c \\
& \text { Hence, } \\
& \int 8 \tan ^{4} x d x=\tan ^{3} x-3 \tan x+3 x+C
\end{aligned}
$$

K. Unit 10

Integration by Miscellaneous Substitutions

Substitutions are often suggested by the form of the integrand. The following are good substitutions to use.

1. For an integrand of the form $(a x+b)^{1 / n}$, use the substitution $a x+b=t^{n}$, where a, b are constants.
2. For an integrand of the form $\sqrt{a+b x+x^{2}}$, use the substitution $a+b x+x^{2}=(t-x)^{n}$, where a, b, n are constants.
3. For an integrand of the form
$\sqrt{a+b x-x^{2}}=\sqrt{c+x)(d-x)}$, use the substitution $a+b x-x^{2}=(c+x)^{2} t^{2}$ or the substitution. $a+b x-x^{2}=(d+x)^{2} t^{2}$, where a, b, c, d are constants.
4. For an integrand involving trigonometric functions, use the substitution $\tan (z / 2)=t$. On differentiating, ($1 / 2$) $\sec ^{2}(x / 2) d x=d t$, $\sec ^{2}(x / 2) d x=2 d t, d x=2 / \sec ^{2}(x / 2), d t=$ $2 /\left(1+\tan ^{2}(x / 2)\right)=2 /\left(1+t^{2}\right) d t$
Aiso, $\sin x=2 \tan (x / 2) /\left(1+\tan ^{2}(x / 2)\right)=2 t /\left(1+t^{2}\right)$ $\cos x=\left(1-\tan ^{2}(x / 2)\right) /\left(1+\tan ^{2}(x / 2)\right)=\left(1-t^{2}\right) /\left(1+t^{2}\right)$ $\tan x=(2 \tan (x / 2)) /\left(1-\tan ^{2}(x / 2)\right)=2 t /\left(1-t^{2}\right)$

Note that $\csc x=1 / \sin x=\left(1+t^{2}\right) / 2 t$
$\sec x=1 / \cos x=\left(1+t^{2}\right) /\left(1-t^{2}\right)$
$\cot x=1 / \tan x=\left(1-t^{2}\right) / 2 t$
solved problem: Evaluate $1 /(1-\cos x) d x$
Let $\tan (x / 2)=t$. From method 4 of substitution, $d x=$ $2 /\left(1+t^{2}\right) d t$ and $\cos x=\left(1-t^{2}\right) /\left(1+t^{2}\right)$

$$
\begin{aligned}
& \int 1 /(1-\cos x) d x=\int 2 /\left(1+t^{2}\right) /\left(1-\left(1-t^{2}\right) /\left(1+t^{2}\right)\right) d t \\
& =\int 2 /\left(2 t^{2}\right) d t=\int 1 / t^{2} d t \\
& =-1 / t+C=-1 / \tan (x / 2)+C
\end{aligned}
$$

Therefore

$$
\int 1 /(1-\cos x) d x=-1 / \tan (x / 2)+0
$$

Now try solving the following problems:

1. Evaluate

$$
\int 1 /(3+2 \sin x) d x
$$

Solution:

$$
\begin{aligned}
& \quad \text { Let } \tan (x / 2)=t, \text { then } d x=\longrightarrow \quad \text { and } \sin x=\longrightarrow \\
& \int 1 /(3+2 \sin x) d x=\longrightarrow \\
& \int 1 /(3+2 \sin x) d x-\left(1 /\left(1+t^{2}\right) /\left(3+4 t /\left(1+t^{2}\right)\right) d t\right. \\
& \int 1 /\left(3 t^{2}+4 t+3\right) d t \\
& =\int 1 /\left(3\left((t+2 / 3)^{2}+5 / 9\right)\right) d t=(1 / \sqrt{5}) \text { arc } \tan (t+2 / 3) /(\sqrt{5} / 3)+0 \\
& =(1 / \sqrt{5}) \operatorname{arc} \tan (3 t+2) / \sqrt{5}+c
\end{aligned}
$$

Therefore

$$
\int 1 /(3+2 \sin x) d x=(1 / \sqrt{5}) \tan (3 \tan (x / 2)+2) / \sqrt{5}+C
$$

2. Evaluate $\int \cos \sqrt{x} d x$

Solution:

$$
\text { Let } t=\sqrt{x} \text {, then } d t=\longrightarrow
$$

substitute t and $d x$ in the integral.
$\int \cos \sqrt{x} d x=\longrightarrow$
$\int \cos \sqrt{x} d x=\int \cos t(2 t d t)=2 \int t \cos t d t$
$=2 t \sin t-2 \int \sin t d t=2 t \sin t+2 \cos t+C$
$2 \sqrt{x} \sin \sqrt{x}+2 \cos \sqrt{x}+c$
3. Find $\int 1 /\left(x \sqrt{x^{2}+x+1}\right) d x$

Solution:
Let $x^{2}+x+1=(t-x)^{2}$.
Solve for x in terms of t.
$x=\longrightarrow, d x=\longrightarrow \quad, \sqrt{x^{2}+x+1}=\longrightarrow$
solving for x in terms of t,

$$
\begin{aligned}
& x^{2}+x+1=t^{2}-2 x t+x^{2} \\
& x(1+2 t)=t^{2}-1 \\
& x=\left(t^{2}-1\right) /(1+2 t) \\
& d x=\left((1+2 t)(2 t)-\left(t^{2}-1\right)(2)\right) /\left(1+2 t^{2}\right) d t \\
& =\left(2 t+4 t^{2}-2 t^{2}+2\right)\left(1+2 t^{2}\right) d t \\
& f\left(2 t^{2}+2 t+2\right) /(1+2 t)^{2} d t \\
& \sqrt{x^{2}+x+1}=\sqrt{\left(t^{2}-1\right)^{2} /(1+2 t)^{2}+\left(t^{2}-1\right) /(1+2 t)+1}
\end{aligned}
$$

$$
\begin{aligned}
& =\sqrt{\left(\left(t^{2}-1\right)^{2}+\left(t^{2}-1\right)(12 t)+(1+2 t)^{2}\right) /(1+2 t)} \\
& = \\
& =\sqrt{\left(t^{4}-2 t^{2}+1+t^{2}+2 t^{3}-2 t-1+1+4 t+4 t^{2}\right)(1+2 t)} \\
& =\sqrt{\left(t^{4}+2 t^{3}+3 t^{2}+2 t+1\right) /(1+2 t)}=\left(t^{2}+t+1\right) /(1+2 t) \\
& \int 1 /\left(x \sqrt{\left.x^{2}+x \cdot \pm 1\right)} d x=\rightarrow\right. \\
& \int 1 /\left(x \sqrt{\left.x^{2}+x+1\right)} d x\right. \\
& =\int\left(2\left(t^{2}+t+1\right)(1+2 t)(1+2 t)\right) /\left((1-2 t)^{2}\left(t^{2}-1\right)\left(t^{2}+t+1\right)\right) d t \\
& =\int 2 /\left(t^{2}-1\right) d t=\ln |(t-1) /(t 1)|+C
\end{aligned}
$$

From equation $l_{\text {; }}$

$$
x^{2}+x+1=(t-x)^{2}
$$

$$
\text { Write } t \text { in terms of } x \text {. }
$$

$$
t=\longrightarrow
$$

$$
x^{2}+x+1=(t-x)^{2}
$$

$$
\sqrt{x^{2}+x+i}=t-x
$$

$$
t=\sqrt{x^{2}+x+1}+x
$$

$$
\int 1 /\left(x \sqrt{x^{2}+x+1}\right) d x
$$

$$
=\ln \left|\left(\sqrt{x^{2}+x+1}+x-1\right) /\left(\sqrt{x^{2}+x+1}+x+1\right)\right|+c
$$

K. Unit 11

Computation of Cross-Sectional Length s

The length of an arc PQ is the limit of the sum of all the chords $P A_{1}, A_{1} A_{2} \ldots \ldots A_{n-1} Q$. Iet $P(a, 1)$ and $Q(t$, .II! be two points on the curve $y=$ $f(x)$ where $f(x)$ and $f^{\prime}(x)$, its derivative are continuous on $a \leq x \leq b$, then the arc length s is given by $s=\int_{P Q} d s=\int_{a}^{b} \sqrt{1+(d y / d x)^{2}} d x$

Let $P(a, 1)$ and $Q(b, m)$ be two points on the curve $x h(y)$ where $h(y)$ and $h^{\prime}(y)$, its derivative are continuous on $l \leq y \leq m$, then the arc length is given

$$
\text { by } s=\int_{P Q} d s=\int_{1} \frac{m}{I+(d x / d y)^{2}} d y
$$

Let $P\left(t=t_{1}\right)$ and $Q\left(t=t_{2}\right)$ be two points on the curve defined by $x=f(t), y=g(t)$. Similarly, if the conditions of continuity are met, the lengtin of $P Q$ is $s=\int_{P Q} d s=\int t_{t_{i}} \sqrt{(d x / d t)^{2}+(d y / d t)^{2}} d t$

Derivation of the arc length formula

From the figure above, the interval $a \leq x \leq y$ is divided into points $c_{0}=a, c_{1}, c_{2} \ldots, c_{n-1}, c_{n}=b$, with corresponding points $P=A_{0}, A_{1}, A_{2} \ldots, A_{n-1}, A_{n}=Q$.

$$
A_{k-1} A_{k}=\sqrt{\left(\Delta_{k} x\right)^{2}\left(\Delta_{k} y\right)^{2}}=\sqrt{1+\left(\Delta_{k} y / \Delta_{k} x\right)^{2}}
$$

There is at least one point $x=x_{k}$ on $A_{k-1} A_{k}$ such that $f^{\prime}\left(x_{k}\right)=\Delta_{k} y / \Delta_{k^{x}}$
$A_{K-1} A_{k}=\sqrt{I+\left(f^{2}\left(x_{k}\right)\right)^{2}}, c_{k-1}<x_{k}<x_{k}$
Taking the limit as k tends to infinity.
$P Q \lim _{n \rightarrow \infty} \sum_{k-1}^{\frac{n}{1+\left(f^{\prime}\left(x_{k}\right)\right)^{2}}}=\int_{a}^{b} \sqrt{I+(d y / d x)^{2}} d x$

Solved problem

Find the length of the arc of y $2 x^{3 / 2} / 3$ from $x=1$ to $x=2$.

Solution:

$$
\text { y } 2 x^{3 / 2} / 3, d y / d x x^{1 / 2}, \quad 1+(d y / d x)^{2}=1+x
$$

Arc length $s=\int_{1}^{2} \sqrt{1+x} d x=[1 / 2 \sqrt{1+x}]_{1}^{2}$
$=1 / 2(1 / \sqrt{3}+1)=(1+\sqrt{3}) /(2 \sqrt{3})$ units
Now try solving the following problems.

1. Find the length of the arc of the curve $x=2 t^{2}$, $y=t^{2}$ from $t=0$ to $t=1$.
Solution:

$$
\begin{aligned}
& d x / d t=\longrightarrow \quad, d y / d t=\longrightarrow \\
& d x / d t=4 t \quad, \quad d y / d t=2 t \\
& (d x / d t)^{2}+(d y / d t)^{2}=\longrightarrow
\end{aligned}
$$

$(d x / d t)^{2}+(d y / d t)^{2}=(4 t)^{2}+(2 t)^{2}=16 t^{2}+4 t^{2}=20 t^{2}$
The arc length $s=\int_{0}^{1} \sqrt{20 t^{2}} d t$
The arc length $s=\int_{0}^{1} \sqrt{20 t^{2}} d t=\sqrt{20} \int_{0}^{1} t d t$
$=\sqrt{20}\left[(1 / 2) t^{2}\right]_{1}^{2}=\sqrt{20}(1 / 2)=4 \sqrt{5} / 2=2 \sqrt{5}$ units
2. Compute the length of the arc of the curve $x=e^{t}$ $\cos 3 t, y=e^{t} \sin 3 t$ from $t=0$ to $t=3$.
Solution:

$$
\begin{aligned}
& x=e^{t} \cos 3 t, y=e^{t} \sin 3 t \\
& (d x / d t)=\longrightarrow(d y / d t)=\longrightarrow \\
& (d x / d t)=e^{t} \cos 3 t+e^{t}(-3 \sin 3 t)=e^{t}(\cos 3 t-3 \sin 3 t) \\
& (d y / d t)=e^{t} \sin 3 t+e^{t}(3 \cos 3 t)=e^{t}(\sin 3 t+3 \cos 3 t) \\
& (d x / d t)^{2}+(d y / d t)^{2}=\longrightarrow \\
& (d x / d t)^{2}+(d y / d t)^{2}=e^{2 t}(\cos 3 t-3 \sin 3 t)^{2}+e^{2 t}(\sin 3 t+3 \cos 3 t)^{2} \\
& =e^{2 t}\left(\cos ^{2} 3 t-6 \sin 3 t{\cos 3 t+9 \sin ^{2} 3 t+\sin ^{2} 3 t}^{\left.6 \sin 3 t \cos 3 t+9 \cos ^{2} 3 t\right)}\right. \\
& =e^{2 t}\left(1+9 ;,\left(5 i n \operatorname{cin} \sin ^{2} x+\cos ^{2} x=1\right)=10 e^{2 t}\right.
\end{aligned}
$$

The arc length is

$$
\int_{0}^{3} \sqrt{10 e^{2 t}} d t=
$$

$$
\longrightarrow
$$

$\int_{0}^{3} \sqrt{10 e^{2 t}} d t=\sqrt{10} \int_{0}^{3} e^{t} d t t^{10}\left[e^{t}\right]_{0}^{3}=\sqrt{10 e^{3}}$
The arc length is $10 e^{3}$ units.
3. Find the length of the arc of the curve $y^{5}=$ $3 x^{2}$ from $x=1$ to $x=2$.

Solution:

$$
y^{2}=3 x^{2}, \quad d y / d x=\longrightarrow
$$

$2 y d y / d x=6 x$
$d y / d x=3 x / y$
From $y^{2}=3 x^{2}, y=\sqrt{3} x$
Therefore, $d y / d x=3 x / \sqrt{3} x=3 / \sqrt{3}$
$I+(d y / d x)^{2}=\longrightarrow$
$1+(d y / d x)^{2}=1+9 / 3=1+3=4$
The arc Length $s=\int_{i}^{2} 4 d x=\longrightarrow$
The are length $s=\int_{1}^{2} 4 d x=[4 x]_{1}^{2}$
$=8-4=4$ units.

Let $f(x)$ be continuous and non-negative on the interval $a \leq x \leq b$ then
$\lim _{x \rightarrow \infty} \sum_{k=2}^{n} f\left(x_{k}\right) \Delta_{x} x=\int_{a}^{b} f(x) d x$.
Divide the interval $a \leq x \leq b$ by points $c_{0}=a, c_{1}, c_{2} \ldots \ldots$
, $c_{n}=b$. As shown in the figure, the area of the representative strip is $f\left(x_{k}\right) \Delta_{L_{2}} x$.
$f\left(x_{1}\right) \Delta_{1} \bar{x}+f\left(x_{2}\right) \hat{\Delta}_{2} x+f\left(x_{3}\right) \Delta_{3} x+\ldots+f\left(x_{n}\right) \Delta_{n} x$
$=\sum_{k=1}^{n} f\left(x_{k}\right) L_{i s} x$ is the sum of the approximating rectangles.

The limit of this sum is
$\lim _{n \rightarrow \infty} \sum_{k=1}^{n} f\left(x_{k}\right) \Delta_{K} x=\int_{a}^{b} f(x) d x$
which is aiso the area under the curve from $\mathrm{x}=\mathrm{a}$ to $\mathrm{x}=\mathrm{b}$.

To compute the area bounded by the curve, it is advisable to sketch the representative strip, and the area sought. Then write the area of the approximating rectangle and the sum for the n rectangles. Then apply the idea that
$\lim _{n \rightarrow \infty} \sum_{k=1}^{n} f\left(x_{k}\right) \Delta_{k} x=\int_{a}^{b} f(x) d x$.
As one's skill is increased in solving the prodiems: some of the steps can be scipped. solved problem

Find the area bounded by the curve $y=x^{2}$, the x-axis and the ordinates $x=1$ and $x=2$. Solution:

From the elementary strip in the figure on the next page, the base of the rectangle is $\Delta_{K} x$, the altitude is $y_{k s}=f\left(x_{k}\right)=x_{k}^{4}$ and the area is $x_{k}^{4} \Delta_{k} x$

Then the area bounded by the curve is

$$
\begin{aligned}
A= & \lim _{n} \sum_{k=1}^{n} x_{4}^{k} \Delta_{x} x=\int_{1}^{2} x^{4} d x \\
& {\left[x^{5} / 5\right]_{1}^{2}=(1 / 5)(32-1)=(31 / 5) }
\end{aligned}
$$

The area bounded by the curve is $31 / 5$ square units. Now try solving the following problems.

1. Find the area bounded by the parabola
$y=6 x-x^{2}$, the x-axis and the ordinates $x=2$ and $x=4$.

Solution:

From the elementary strip in the figure above, the base of the rectangle is \longrightarrow
The base of the rectangle is Δx
The altitude of the rectangle is \longrightarrow
The altitude of the rectangle is $6 x-x^{2}$
The area of the rectangle is

The area of the rectangle is $\left(6 x-x^{2}\right) \Delta x$
The required area is

The required area is $\int_{2}^{4}\left(6 x-x^{2}\right) d x$
$=\left[3 x^{2}-x^{3} / 3\right]_{2}^{4}=(48-64 / 3-12+8 / 3)=52 / 3$
$=52 / 3$ square units.
2. Find the larger area cut from the circle
$x^{2}+y^{2}=64$ by the line $x=?$.
Solution:

From the elementary sirip in the figure above, the base of the rectangle is

The base of the rectangle is Δ_{x}
The altitude of the rectangle is \longrightarrow
The altitude of the rectangle is $2 \sqrt{64-x^{2}}$
The area of the rectangle is

The area of the rectangle is $2 \sqrt{64-x^{2}} \Delta x$
The required area is
The required area is $\int_{-8}^{7} 2 \sqrt{64-x^{2}} d x$
$=2\left[(x / 2) \sqrt{64-x^{2}}+(64 / 2) \operatorname{arc} \sin (x / 8)\right]_{-8}^{7}$
$=2((7 / 2) \sqrt{64-49}+32 \arcsin (7 / 8)+4 \sqrt{64-64}+32 \operatorname{arc} \sin (-8 / 8)$
$=[7 \sqrt{15}+64 \operatorname{arc} \sin (7 / 8)+64 \operatorname{arc} \sin (-1)]$ units.
3. Find the area bounded by the parabolas y $4 x^{2}-4$ and $y \quad x^{2}-4 x$

From the elementary figure in the figure above, the base of the rectangle is \longrightarrow
The base of the rectangle is Δx.
The altitude of the rectangle is \longrightarrow
The altitude of the rectangle is $x^{2}-4 x-\left(4 x^{2}-4\right)$

$$
=-3 x^{2}-4 x+4
$$

The area of the rectangle is

The area of the rectangle is $\left(-3 x^{2}-4 x+4\right) \Delta x$
TO obtain the points of intersection of the two parabolas, set $x^{2}-4 x=4 x^{2}-4$
Hence, $3 x^{2}+4 x-4=0$

$$
\begin{aligned}
x & =(-4 \pm \sqrt{16-4(3)(-4)}) / 6 \\
x & =(-4 \pm \sqrt{16+48}) / 6=(-4 \pm \sqrt{64}) / 6 \\
& =(-4 \pm 8) / 6 \\
x & =(-4+8) / 6=4 / 6=2 / 3 \\
x & =(-4-8) / 6=-12 / 6=-2
\end{aligned}
$$

The required area is

The required area is $\int \frac{2 / 3}{\left(-3 x^{2}-4 x+4\right)}-\frac{2}{-2}$ $=\left[-x^{3}-2 x^{2}+4 x\right]_{-2}^{2 / 3}=-8 / 27-8 / 9+8 / 3-8+8+8$ $=229 / 27$ square units.
M. Unit 13

The Average of a Function over an Interval

The average of a function $f(x)$ over an interval $[a, b]$ is given by $\left(\int_{a}^{b_{f}}(x) d x\right) /(b-a)$

The height of the rectangle is the the average value of $f(x)$ over $[a, b]$. The area of the rectangle is equal to the area of the region under the graph of $f(x)$.

Solved problem:
Gompute the average value of $3 \cos x$ in the interval $[0, \pi / 2]$.

Solution:
The average value of the function is
$\left(\int_{0}^{2} 3 \cos x d x\right) /(\pi-0)$

$$
\int_{0}^{\pi} 3 \cos x d x=[3 \sin x]_{0}^{2}=3(1)=3
$$

The average value of the function is
$3 /(\pi-0)=3 / \pi$.
Now try solving the following problems.

1. If a man travels at 55 miles per hour for 1 hour and 35 miles per hour for another hour, what is his average velocity with respect to time?

Solution:

Let $f(t)$ be the velocity at time t. The average velocity is ($\left.\int_{0}^{2} f(t) d t\right) /(2-0)$ Examine the following diagram

The area of the shaded region is \longrightarrow
The area of the shaded region is $\int_{0}^{2} f(t) d t$
$=55+35=90$
The average velocity is ($\left.\int_{0}^{2} f(t) d t\right) /(2-0)=90 / 2$ $=45$ miles per hour.
2. Compute the average value of $30 x(1-\sqrt{x})^{2}$
in the interval $[0,1]$.
Solution:
The average value required is
$\left(\int_{0}^{1} 30 x(1-\sqrt{x})^{2} d x\right) /(1-0)$
$30 \int_{0}^{1} x(1-\sqrt{x})^{2}=\longrightarrow$
$30 \int_{0}^{1} x(1-\sqrt{x})^{2}=30 \int_{0}^{1}\left(x-2 x^{3 / 2}+x^{2}\right) d x$
$30\left[x^{2} / 2-\left(4 / 5 / x^{5 / 2}+x^{3} / 3\right]_{0}^{1}=30[1 / 2-4 / 5+1 / 3]\right.$
$=30(1 / 30)=1$
The average value required is \longrightarrow
The average value required is $1 / i=1$.
3. Compute the average value of $e^{-3 x}$ in the
interval $[1,2]$.

Solution:

The average value required is

$$
\begin{aligned}
& \left(\int_{1}^{2} e^{-3 x} d x\right) /(2-1) \\
& \int_{1}^{2} e^{-3 x} d x=\longrightarrow
\end{aligned}
$$

$$
\int_{1}^{2} e^{-3 x} d x=\left[-e^{-3 x} / 3\right]_{1}^{2}=\left(1 / 3\left[-e^{-6} j e^{-3}\right]\right.
$$

The average value required is \longrightarrow
The average value required is $(1 / 3)\left[e^{-6}+e^{-3}\right]$
$=(1 / 3)\left(e^{-3}-e^{-6}\right)$.
N. Unit 14

Improper Integrals

$$
\int_{a}^{b} f(x) d x \text { is an improper integral if } f(x) \text { has }
$$

at least one point oi discontinuity in the intervai
$a \leq x \leq b$ or $a t$ least a or b is infinite.
Case 1: $f(x)$ is discontinuous at some point.
Let $f(x)$ be continuous on $a \leq x \leq b$ and discontinuous at $x=b$, then

$$
\int_{a}^{b} f(x) d x=\lim _{\epsilon} 0^{+} \int_{a}^{b-\epsilon} f(x) d x \text { if the limit exists. }
$$

Let $f(x)$ be continuous on $a<x \leqslant b$ and discontinuous at $x=a$, then

$$
\int_{a}^{b} f(x) d x=\lim _{G} 0^{+} \int_{a}^{b} f(x) d x \text { if the iimit exists. }
$$

Let $f(x)$ be continuous on $a \leqslant x \leqslant b$ and discontinuous at $x=c$ where $a<c<b$, then

$$
\int_{a}^{b} f(x) d x=\lim _{\epsilon \rightarrow 0^{+}} \int_{a}^{c-\epsilon} f(x) d x+\lim _{\delta \rightarrow 0^{+}} \int_{c+\delta}^{b} f(x) d x,
$$

if the limit exists.

Case 2: At least one of the limit points is infinite Let $f(x)$ be continuous on $a \leqslant x \leqslant s$, then

$$
\int_{a}^{\infty} f(x) d x=\lim _{s \rightarrow \infty} \int_{a}^{s} f(x) d x \text { if the limit exists. }
$$

Let $f(x)$ be continuous on $t \leq x \leqslant b$, then
$\int_{-\infty}^{b} f(x) d x=\lim _{t \rightarrow \infty} \int_{t}^{b} f(x) d x$ if the limit exists.
Let $f(x)$ be continuous on $t \leq x \leq s$, then
$\int_{-\infty}^{+\infty} f(x) d x \lim _{t \rightarrow \infty} \int_{c}^{s} f(x) d x+\lim _{s \rightarrow-\infty} \int_{s}^{c} f(x) d x$
if both limits exist.
Solved problem:

$$
\text { Evaluate } \int_{2}^{\infty}\left(1 / x^{3}\right) d x
$$

Solution:
This problem involves case 2 in which the upper limit is infinite.

$$
\begin{aligned}
& \int_{2}^{\infty}\left(1 / x^{3}\right) d x=\lim _{t \rightarrow \infty} \\
= & \operatorname{im}_{t \rightarrow \infty}\left(-1 / 2 t^{2}+1 / 8\right)=1 / 0
\end{aligned}
$$

Therefore,

$$
\int_{2}^{\infty}\left(1 / x^{3}\right) d x=1 / 8
$$

Now try solving the following problems.

1. Find $\int_{0}^{\infty} e^{-4 x} \cos x d x$

Solution:

This problem involves case 2 in which the upper limit is infinite.

$$
\int_{0}^{\infty} e^{-4 x} \cos x d x=\lim _{t \rightarrow \infty} \int_{0}^{t} e^{-4 x} \cos x d x
$$

Using the method of integration by parts,

$$
\begin{aligned}
& \int e^{-4 x} \cos x d x= \\
& \int e^{-4 x} \cos x d x=e^{-4 x} \sin x+4 \int e^{-4 x} \sin x d x \\
& =e^{-4 x} \sin x 4\left[-e^{-4 x} \cos x-4 \int e^{-4 x} \cos x d x\right] \\
& \int e^{-4 x} \cos x d x=e^{-4 x} \sin x-4 e^{-4 x} \cos x-16\left[e^{-4 x} \cos x d x\right. \\
& 17 \int e^{-4 x} \cos x d x=e^{-4 x}(\sin x-4 \cos x)
\end{aligned}
$$

$$
\int e^{-4 x} \cos x d x=e^{-4 x}(\sin x-4 \cos x) / 17
$$

$$
\int_{0}^{i} e^{-4 x} \cos x d x=\longrightarrow
$$

$$
\int_{0}^{t} e^{-4 x} \cos x d x=\left[e^{-4 x}(\sin x-4 \cos x) / 17\right]_{0}^{t}
$$

$$
=e^{-4 t}(\sin t-4 \cos t) / 17+4 / 17
$$

$$
\lim _{t \rightarrow \infty} \int_{0}^{t} e^{-4 x} \cos x d x=\longrightarrow
$$

$$
\lim _{t \rightarrow \infty} \int e^{-4 x} \cos x d x=\lim _{t \rightarrow \infty} e^{-4 t}(\sin t-4 \cos t)+4 / 17=4 / 17
$$

Therefore, $\int_{0}^{\infty} e^{-4 x} \cos x d x=\longrightarrow$ $\int_{0}^{\infty} e^{-4 x} \cos x d x=\lim _{t \rightarrow \infty} \int_{0}^{t} e^{-4 x} \cos x d x=4 / 17$.
2. Evaluate $\int_{-\infty}^{2} e^{x} d x$.

Solution:
This problem involves case 2 in which the lower limit is infinite.

$$
\begin{aligned}
& \int_{-\infty}^{2} e^{x} d x=\lim _{t \rightarrow-\infty} \int_{t}^{2} e^{x} d x \\
& \int_{t}^{2} e^{x} d x=\left[e^{x}\right]_{t}^{2}=e^{2}-e^{t}
\end{aligned}
$$

$$
\lim _{t \rightarrow-\infty} \int_{t}^{2} e^{x} d x=
$$

$\operatorname{iim}_{t \rightarrow-\infty} \int_{t}^{2} e^{x} d x=\operatorname{iim}_{t \rightarrow-\infty}\left[e^{2}-e^{t}\right]=e^{2}$
Therefore, $\int_{-\infty}^{2} e^{x} d x=\longrightarrow$
$\int_{-\infty}^{2} e^{x} d x=\lim _{t \rightarrow-\infty}\left[e^{2}-e^{t}\right]=e^{2}$.
3. Find $\int_{0}^{\infty} 2 /\left(1+x^{2}\right) d x$

Solution:

This problem involves case 2 in which the upper limit is infinite.

$$
\begin{aligned}
& \int_{0}^{\infty} 2 /\left(1+x^{2}\right) d x \lim _{t \rightarrow \infty} \int_{0}^{t} 2 /\left(1+x^{2}\right) d x \\
& \int_{0}^{t} 2 /\left(1+x^{2}\right) d x=\longrightarrow \\
& \int_{0}^{t} 2 /\left(1+x^{2}\right) d x=[2 \operatorname{arc} \tan x]_{0}^{t}=2 \operatorname{arc} \tan t
\end{aligned}
$$

$\lim _{t \rightarrow \infty} \int 2 /\left(1+x^{2}\right) d x=\longrightarrow$
$\lim _{t \rightarrow \infty} \int 2 /\left(1+x^{2}\right) d x=\lim _{t \rightarrow \infty} 2$ arc $\tan t=2(\pi / 2)=\pi$.
0. Unit 15

Polar Coordinates

Let $O P=r$ make an angle θ with $O X$, then the polar coordinates of the point P is (r, θ). The rectangular coordinates of the point P are (r, θ) $=(x, y)$. The point 0 is called the pole while $U X$ is called the polar axis, The relations between rectangular and polar coordinates are
$x=r \cos \theta, y=r \sin \theta$
and $r^{2}=x^{2}+y^{2}, \tan \theta=y / x$.
Solved problem:
Express $(2,5 \pi / 6)$ in rectangular coordinates Solution:

Using the notation in this unit, $r=2$ and
$\theta=5 \pi / 6$.
The objective is to find out the value of x and y.
From the relations between rectangular and polar coorcinaṫes,
$x=r \cos t=2 \cos (5 \pi / 6)=2(-\sqrt{3} / 2)=-\sqrt{3}$
$y=r \sin \theta=2 \sin (5 \pi / 6)=2(1 / 2)=1$.
Therefore, the rectangular coordinates of the point
are $(-\sqrt{3}, 1)$
Now try solving the following problems

1. Express ($-4,3 \pi / 4$) in rectangular coordinates.

Solution:
Using the notation in this unit,
$r=\longrightarrow \quad$ and $\theta=\longrightarrow$
$r=-4, \theta=3 \pi / 4$
The objective is to find out the value of x and y.
From the relations between rectanguiar and polar
coordinates,
$x=\longrightarrow$ and $y=\longrightarrow$
$x=r \cos \theta=-4 \cos (3 \pi / 4)=-4(-\sqrt{2} / 2)=2 \sqrt{2}$
$y=r \sin \theta=-4 \sin (3 \pi / 4)=-4(\sqrt{2} / 2)=-2 \sqrt{2}$
Therefore the rectanguiar coordinates of the point are

The rectangular coordinates of the point are
$(2 \sqrt{2},-2 \sqrt{2})$
2. Express (-1, -1) in polar coordinates.

Solution:
USing the notaiion in this unit.
$\mathrm{x}=\rightarrow$ and $\mathrm{y}=\longrightarrow$
$x=-1, y=-1$
The objective is to find out the value of r and θ.
From the relations between rectangular and polar coordinates,
$r=\longrightarrow$ and $\theta=\longrightarrow$
$r^{2}=x^{2}+y^{2}=(-1)^{2}+(-1)^{2}=1+1=2$
$r=\sqrt{2}$
$\tan \theta=y / x=-I /-I=I$
The required angle θ is in the third quadrant.
$\theta=\operatorname{arc} \operatorname{tanl}=5 \pi / 4$
Therefore the polar coordinates of the point
are
The polar coordinates of the point are $(\sqrt{2}, 5 \pi / 4)$.
3. Transform tine equaiion $y=3 x+1$ into polar coordinates.

Solution:
Using the notation in this unit,
$\mathrm{x}=\longrightarrow \quad$ and $\mathrm{y}=\longrightarrow$
$x=r \cos \theta$ and $y=r \sin \theta$
The equation becomes
$r \sin \theta=3 r \cos \theta+1$
$r(\sin \theta-3 \cos \theta)=1$
$r=1 /(\sin \theta-3 \cos \theta)$
P. Unit 16

Infinite Sequences and Series

Definitions on sequences

If the domain of a function consists of positive integers $\left\{a_{n}\right\} \overline{\bar{j}} a_{i}, a_{2}, a_{3}, \ldots, \ldots, a_{a} \ldots$ then it is called an infinite sequence.

A sequence $\left\{a_{n}\right\}$ is bounded if there exists numbers A and B such that $A \leq a_{n} \leq B$ for $n=1,2, \ldots \ldots \ldots$.

A sequence $\left\{a_{n}\right\}$ is nonincreasing if $a_{1} \geq a_{2} \geq a_{3}$
$\geq a_{n}$. A sequence $a_{n} 3$ is nondecreasing if $a_{1} \leq a_{2} \leq a_{3} \quad \ldots \ldots \ldots \leq a_{n}$.

A sequence $\left\{a_{n}\right\}$ converges to a, that is
$\lim _{n \rightarrow \infty} a_{n}=a$, if for any positive small number \in, there exists a positive number N such that whenever $n>N$, then $\left|a-a_{n}\right|<\epsilon$. A sequence with 2 ユimit is a convergent sequence while a sequence without a iimit is called a divergent sequence.

A sequence $\left\{z_{n}\right\}$ diverges to ∞, that is $\lim _{n \rightarrow \infty}$ $a_{n}=\infty$, if for any large positive number m, there exists a positive integer m such that whenever $n>m$ then $\left|a_{n}\right|>M$. If $a_{n}>M$, $\lim _{n \rightarrow \infty} a_{n}=\infty$ but if $a_{n}<-M$, $\lim _{n \rightarrow \infty} a_{n}=-\infty$.

Definations on sums

An infinite sequence $\left\{a_{n}\right\}$ is called an
infinite series if
$\sum a_{n}=\sum_{n=1}^{\infty} a_{n}=a_{1}+a_{2}+a_{3} t \ldots a_{n} t \ldots$.
An associated sequence of partial sums of the series
is $s_{1}=a_{1}, s_{2}=a_{1}+a_{2}, s_{3}=a_{1}+a_{2}+a_{3}$.
$S_{n}=a_{1}+a_{2}+a_{3}+\cdots+a_{n}$.
The series $\sum a_{n}$ converges to S, its partial sum
if $\lim _{n \rightarrow \infty} S_{n}=S$.
The series $\left\langle a_{n}\right.$ diverges if $\lim _{n \rightarrow \infty} S_{n}$ does not exist.
Important theorems in sums and sequences
Assume $\lim _{n \rightarrow \infty} a_{n}=a$ and $\lim _{n \rightarrow \infty} b_{n}=b$

1. $\lim _{n \rightarrow \infty}\left(c a_{n}\right)=c \lim _{n \rightarrow \infty} a_{n}=c a$, where c is a constant
2. $\quad \lim _{n \rightarrow \infty}\left(a_{n} \pm b_{n}\right)=\lim _{n \rightarrow \infty} a_{n} \pm \lim _{n \rightarrow \infty} b_{n}=a \pm 0$
3. $\quad \lim _{n \rightarrow \infty}\left(a_{n} b_{n}\right)=\lim _{n \rightarrow \infty} a_{n}-\lim _{n \rightarrow \infty} b_{n}=a b$

$$
\lim _{n \rightarrow \infty}\left(a_{n} / b_{n}\right)=\lim _{n \rightarrow \infty} a_{n} / \lim _{n \rightarrow \infty} b_{n}=a / b
$$

4. If $\sum a_{n}$ converges to A, then $\sum c a_{n}$ converges to c A where c is a constant.
5. If $\sum a_{n}$ converges, then $\lim _{n \rightarrow \infty} a_{n}=0$. The converse is false since for the series $\sum 1 / n, \lim _{n \rightarrow \infty} 1 / n=0$ but $\sum I / n$ diverges.
6. If $\lim _{n \rightarrow \infty} a_{n} \neq 0$, the $\sum a_{n}$ diverges.
7. If $-1<r<l$, the geometric series $a+a r+\ldots \operatorname{tar}^{n-1}+\ldots$ converges to $a /(I-r)$. a is the first term, and r is the common ratio.

Proof: Let S_{n} the sum of the first n terms.
$S_{n}=a \dot{+a r+a r^{2}+\ldots+a r^{n-I} . ~}$
$r S_{n}=a r+a r^{2}+\ldots+a r^{n-1}+a r^{n}$.
Therefore, $S_{n}-r S_{n}=a-a r^{n}$
$(I-r) S_{n}=a\left(I-r^{n}\right)$
$S_{n}=a\left(1-r^{n}\right) /(1-r)$
$\lim _{n \rightarrow \infty} S_{n}=a /(1-r)-1 /(1-r) \lim _{n \rightarrow \infty}\left(r^{n}\right)=a /(1-r)$
$\lim _{n \rightarrow \infty} s_{n}=a /(1-r)$
Solved problem
Find out if the sequence $\{2-2 / n\}$ converges or not. If the sequence converges then compute what it converges to.

Solution:

The $n^{\text {th }}$ term is $a_{n}=2-2 / n$
$a_{n+1}=2-2 /(n+1)-2-2 / n+2 / n(n+1)=a_{n}+2 / n(n+1)$
$\therefore a_{n+i} \geqslant a_{n}$ and the sequence is nondecreasing.
Also for all $n, 0 \leq a_{n} \leq 2$. a_{n} is bounded.
Since the sequence is bounded and non-decreasing, it
is convergent. The sequence converges to 2 .
Now try solving the following problems:

1. Is the series $\sum_{n+1}^{\infty} I / n$ convergent or divergent?

If the series is convergent, what number does it
converge to?
Solution:
The sum of n terms is $S_{n}=1 / \sqrt{1}+1 / \sqrt{2}+\cdots \cdots+1 / \sqrt{n}$
But $1 / \sqrt{1} \geq 1 / \sqrt{n}, 1 / \sqrt{2} \geq 1 / \sqrt{n}, 1 / \sqrt{3} \geq 1 / \sqrt{n}, \ldots$
Hence $S_{n} \geq 1 / \sqrt{n}+1 / \sqrt{n}+\ldots+1 / \sqrt{n}=n / \sqrt{n}=\sqrt{n}$
That is $S_{n} \geq \sqrt{n}$
$\lim _{n \rightarrow \infty} S_{n} \geq \operatorname{iim}_{n \rightarrow \infty} \sqrt{n}=\longrightarrow$
$\lim _{n \rightarrow \infty} j_{n}=\infty$
$\sum_{n=1}^{\infty}(1 / \sqrt{n})$ is
$\sum_{n}^{\infty}(1 / \sqrt{n})$ is divergent.
2. Find $\sum_{n=1}^{\infty}(0.12)^{n}$

Solution:

$$
\sum_{n=1}^{\infty}(0.12)^{n}=0.12+0.12^{2}+\cdots+(0.12)^{n}+\ldots
$$

The first term a is
The first term a is 0.12
The common ratio r is \longrightarrow
The common ratio $=$ is 0.12
The sum of the series is $a /(1-r)=\longrightarrow$
The sum of the series is $0.12 /(1-0.12)=0.12 / 0.88$
$=0.03 / 0.02=3 / 22$.
$\sum_{n=1}^{\infty} 0.12^{n}=3 / 22$.
3. Frove that if $c>1$, then $\lim _{n \rightarrow \infty} c^{n}=\infty$.

Solution:
Choose M>0. Lei $I=1+\underline{L}$, where $k>0$.
Expanding by the binomial theorem,
$c^{n}=(I+k)^{n}=\longrightarrow$
$c^{n}=(1+k)^{n}=1+n k+n(n-1) k^{2} / 2 \ldots>1+n k>i n$ where $n>M / k$. A suitable m is the largest in M / k.

Therefore, $\lim _{n \rightarrow \infty} c^{n}=\infty$.

174
Q. Unit 17

Area in Polar Coordinates

Let the area be bounded by the radius vectors $\theta F \theta_{1}$, and $\theta=\theta_{2}$.

The plane area bounded by the curve $r=f(\theta)$ and the radius vectors $\theta=\theta_{1}$ and $\theta=\theta_{2}$ is given by
$(1 / 2) \int_{\theta_{1}}^{\theta_{2}} r^{2} d \theta$.
Solved problem:
Find the area bounded by $r=\cos 2 t$ bounded by $t=0$ and $t=\pi / 4$.

Solution:
The required area is $\int_{0}^{\pi / 4}(\cos 2 t)^{2} / 2 d t$
$\int_{0}^{\pi / 4} \cos ^{2} 2 t / 2 d t=\int_{0}^{\pi / 4}(\cos 4 t+i) / 4 d t$
$=[(\sin 4 t) / 4 t t]_{0}^{\pi / 4} / 4=[(\sin \pi) / 4+\pi / 4-\sin 0-0] / 4$
$=\pi / 16$
Therefore, $\int_{0}^{\pi / 4}(\cos 2 t)^{2 / 2} d t=\pi / 16$:
Now try solving the following problems

1. Find the area of the region bounded by $r=8 \theta$ $\theta=\pi / 8$ to $\theta=\pi / 4$.

Solution:
The area required is $1 / 2 \int_{\pi / 8}^{\pi / 4} \begin{aligned} & 2^{2} \\ & \pi / \theta=1 / 2\end{aligned} \frac{\pi / 4}{\pi / 4}(8 \theta)^{2} d \theta$
$=(1 / 2) \int_{\pi / 8}^{\pi / 4} 640^{2} / 2 d \theta=(1 / 2)\left[(64 / 3) \theta^{3}\right]_{\pi / 8}^{\pi / 4}$
$=(64 / 6)\left[\pi^{3} / 64-\pi^{3} / 192\right]=32 \pi^{3} / 3[(3-1) / 192]$
$=\left(32 \pi^{3} / 2\right)(2 / 192)$
$=\pi^{3} / 9$.
Hence, the area required is $\pi^{3} / 9$.
2. Compute the area of the region bounded by,
$r=\sec \theta, \theta=0$ and $\theta=\pi / 4$.

Solution:

The area required is $(I / 2)\left\{\begin{array}{l}\pi / 4 \\ \sec ^{2} \theta d \theta \\ 0 \pi / 4\end{array}\right.$
$=(1 / 2)[\tan \theta]_{0}^{\pi / 4}=(1 / 2)[\tan (\pi / 4)-\tan \theta]$
$=(1 / 2)(1)=1 / 2$.

Hence the required area is $1 / 2$.
3. Find the area of the region bounded by
$r=3+\cos \theta, \theta=0$, and $\theta=\pi$.

$$
\begin{aligned}
& \text { Solution: } \\
& \text { The required area is } \int_{0}^{\pi}(3+\cos \theta)^{2} / 2 d 0 \\
& =\int_{0}^{\pi}\left(9+6 \cos \theta+\cos ^{2} \theta\right) / 2 d \theta \\
& =\int_{0}^{\pi}(1 / 2)(9+6 \cos \theta+\cos 2 \theta / 2+1 / 2) \\
& =[9 \theta+6 \sin \theta+(\sin 2 \theta) / 4+\theta / 2]_{0}^{\pi} / 2 \\
& =[19 \theta / 2+6 \sin \theta+(\sin 2 \theta) / 4 / 2 \\
& =(1 / 2)(19 \pi / 2)=19 \pi / 4
\end{aligned}
$$

Hence the required area is $19 \pi / 4$.
R. Unit 18

Area of a Surface of Revolution

A short way to write the formula for the surface area of revolution is
$\int_{a}^{b} 2 \pi$ Rds.
where R is the radius of revolution, s the arc length and $[a, b]$ the interval.

Let $x=g(t), y=h(t)$ be parametic equations of a curve. Also let g and h have continuous derivatives $h(t) \geq 0 .$. If Γ is the portion of tine curve corresponding to t in $[a, b]$, then the area of the surface of revolution formed by revolving Γ about the x-axis is

$$
\int_{0}^{b} 2 \pi h(t) \sqrt{\left[g^{i}(t)\right]^{2}+\left[h^{i}(t)\right]^{2}} d t \ldots(2)
$$

Substituting $y=h(t), d x / d t=g^{\prime}(t)$ and $d y / d t=h^{\prime}(t)$, the area of the surface of revolution is

$$
\int_{a}^{b} 2 \pi y \sqrt{(d x / d t)^{2}+(d y / d t)^{2}} d t \ldots(3)
$$

Let a curve be given by $y \quad f(x)$, where f nas a continuous derivative and $f(x) \geq 0$. Le the curve be parametized by the equations $x=t$, $y=f(t)$ then $d x / d t=1$. The area of the surface area ootained by revolving the curve above $[a, b]$ about the π axis is

$$
\begin{equation*}
\int_{a}^{b} 2 \pi y \sqrt{1+(d y / d x)^{2}} d x . \tag{4}
\end{equation*}
$$

Solved problem
Find the area of the surface obtained by revolving part of the curve $y=x / 2$ that lies between $x=0$ and $x=1$ about the x axis.

Solution:
Using the notation in this lesson,
$y=x / 2$ and $d y / d x=1 / 2$.
Apply formula 4 in this lesson. The surface area is given by

$$
\begin{aligned}
& \int_{a}^{b} 2 \pi y \sqrt{1+(d y / d x)^{2}} d x=\int_{0}^{1} 2 \pi x / 2 \sqrt{1+1 / 4} d x \\
& =\int_{0}^{1} \pi x \sqrt{5 / 4} d x=\sqrt{5 \pi / 2} \int_{0}^{1} x d x \\
& \sqrt{5} \pi / 2\left[x^{2} / 2\right]_{0}^{1}=\sqrt{5 \pi / 2}(1 / 2)=\sqrt{5 \pi / 4}
\end{aligned}
$$

Hence the surface area is $\sqrt{5 \pi} / 4$.
Now try solving the following problems.

1. Find the area of the curve obtained by revolving part os the curve $y=x^{3}$ between $x=0$ and $x=2$ about the x -axis.

Solution:
Using the notation in this lesson,
$y=\longrightarrow$ and $d y / d x=$

$y=x^{3}$ and $d y / d x=3 x^{2}$
Apply formula 4 in this lesson. The surface area is given by

$$
\begin{aligned}
& \int_{a}^{0} 2 \pi y \sqrt{I+(d y / d x)^{2}} d x=\rightarrow \\
& \int_{a}^{b} 2 \pi y \sqrt{I+(d y / d x)^{2}} d x=\int_{0}^{2} 2 \pi x^{3} \sqrt{I+\left(3 x^{2}\right)^{2}} d x \\
& =\int_{0}^{2} 2 \pi x^{3} \sqrt{I+9 x^{4}} d x=\pi \int_{0}^{2} 36 x^{3}\left(\sqrt{1+9 x^{4}}\right) / 18 d x \\
& =(2 \pi / 3)\left[\left(1+9 x^{4}\right)^{3 / 2}\right]_{0}^{-2}=(2 \pi / 3)\left[(145)^{3 / 2}-1\right]
\end{aligned}
$$

$$
\text { Hence the surface area is } 2 \pi\left[(145)^{3 / 2}-1\right] / 3
$$

2. Compute the area of the surface of revolution generated by revolving a loop of the curve $8 y^{2}-x^{2}+x^{4}=0$ about the x-axis.

Solution:

Using the notation in the lesson

$$
\begin{aligned}
& y=\rightarrow \text { and } d y / d x= \\
& 8 y^{2}-x^{2}+x^{4}=0 \\
& y^{2}=\left(x^{2}-x^{4}\right) / 8 \\
& y=\left(\sqrt{x^{2}-x^{4}}\right) / 8=\left(x \sqrt{1-x^{2}}\right) / 2 \sqrt{2}
\end{aligned}
$$

$$
\mathrm{dy} / \mathrm{dx}=1 /(2 \sqrt{2})\left[\sqrt{1-\mathrm{x}^{2}}-x^{2} / \sqrt{1-x^{2}}\right]
$$

$$
=1 / 2 \sqrt{2}\left[\left(1-x^{2}-x^{2}\right) / \sqrt{1-x^{2}}\right]=(1 / 2 \sqrt{2})\left[\left(1-2 x^{2}\right) / \sqrt{1-x^{2}}\right]
$$

$$
1+(d y / d x)^{2}=1+\left(1-2 x^{2}\right)^{2} / 8\left(1-x^{2}\right)
$$

$$
=\left(8-8 x^{2}+1-4 x^{2} \div 4 x^{4}\right) / 8\left(1-x^{2}\right)
$$

$$
=\left(9-12 x^{2}+4 x^{4}\right) / 8\left(1-x^{2}\right)=\left(3-2 x^{2}\right)^{2} /\left(8\left(1-x^{2}\right)\right)
$$

$$
2 \pi \int_{a}^{b} y \sqrt{I+(d y / d x)^{2}} d x
$$

$$
\left.=2 \pi \int_{0}^{1} x \sqrt{1-x^{2}}\left(3-2 x^{2}\right)^{2} / 2 \sqrt{2}\right)(2 \sqrt{2}) \sqrt{1-x^{2}}
$$

$$
=(\pi / 4) \int_{0}^{1}\left(3-2 x^{2}\right) x d x=\pi / 4
$$

The area of surface of revolution is $\pi / 4$.
3. Find the area of the surface of revolution of
the curve $x=2 \cos ^{3} t, y=2 \sin ^{3} t$ about the x axis.

Solution:

Using the notation in this lesson,
$x=\longrightarrow$ and $d x / d t=\longrightarrow$
$x=2 \cos ^{3} t$ and $d x / d t=6 \cos ^{2} t$ sin.
$y=\longrightarrow \quad$ and $d y / d t=\longrightarrow$
$y=2 \sin ^{3} t$ and $d y / d t=6 \sin ^{2} t$ cost.
$(d x / d t)^{2} \div(d y / d t)^{2}=\longrightarrow$
$(d x / d t)^{2} \div(d y / d t)^{2}=$
$=36 \cos ^{4} t \sin ^{2} t+36 \sin ^{4} t \cos ^{2} t$
$=36 \cos ^{2} t \sin ^{2} t\left(\cos ^{2} t+\sin ^{2} t\right)$
$=36 \cos ^{2} t \sin ^{2} t$
The required surface is generated by revolving from $\theta=0$ to $\theta=\pi$.
$\xrightarrow{\text { The area required }}$ is $2(2 \pi) \int_{0}^{\pi / 2} \sqrt{(d x / d t)^{2}+(d y / d t)^{2}} d t$
The area required is
$4 \pi \int_{0}^{\pi / 2}\left(2 \sin ^{3} \frac{1}{t}\right)(6 \cos t \sin t) d t$
$=48 \pi \int_{0}^{\pi / 2} \sin ^{4} t \cos t d t=(48 \pi / 5)\left[\sin ^{5} t\right]_{0}^{\pi / 2}$
$=48 \pi(1 / 5)=48 \pi / 5$
Hence the surface required is $48 \pi / 5$.

Volume of a Solid of Revolution

If a plane area is revolved about a line called the axis of revolution, the volume of a solid of revolution is obtained. The two methods used to calculate the volume of a solid of revolution are the disc method and the shell meth.i.

The disc method

If the axis of revolution is part of the area required, draw the area of the representative strip, write the volume obtained by rotating the representative strip and integrate to obtain the volume of the solid of revolution required. If the axis of revolution is not part of the area required, draw the area of the representative strip, extend the sides of the strip to meet the axis of rotation, write the voiume obtained by rotating the representative strip and integrate to obtain the volume of the solid of revolution required.

The sheli method

Draw the area of the representative strip, write the volume of the shell generated when the representative strip is revolved about the axis of revolution and integrate to obtain the volume of the solid of
revolution required.
Solved problem:
Find the volume generated by revolving the first quadrant area bounded by the parabola
$y^{2}=x$ and $x=i$ about the x axis.

Solution:

The disc method could be used.

The volume obtained by generating the representative strip about the x axis is $\pi y^{2} \Delta x$.

The volume of n approximating rectangles is $\sum y^{2} \pi d x$. The required volume is
$v=\int_{0}^{1} \pi y^{2} d x=\pi \int_{0}^{1} x d x=\left[x^{2} / 2\right]_{0}^{1}=\pi(1 / 2)=\pi / 2$. Hence the required volume is $\Pi / 2$ cubic units.

Now try solving the following problems.

1. Find the volume obtained by revolving the first quadrant area bounded by the parabola $y^{2}=4 x$ and x
$=4$ about the x axis.
Solution:
Below is a sketch of the volume desired.

The volume obtained by generating the representative strip about the x axis is $\pi \mathrm{y}^{2} \Delta \mathrm{x}$ The volume of n approximating rectangies is $\sum \pi y^{2} \Delta x$. The required volume is \longrightarrow
The required volume is $\int_{0}^{4} y^{2} d x=\pi \int_{0}^{4} 4 x d x$ $=\pi\left[4 x^{2} / 2\right]_{0}^{4}=\pi 4(16) / 2=32 \pi$
Hence the required volume is 32π cubic units.
2. Use the disc method in calculating the volume generated by revolving the area bounded by $16 x=y^{2}$ and $x=3$ about the line $x=3$.

Solution:
Below is a sketch of the volume desired.

When the representative strip is revolved about x $=3$ it generates a disc whose radius is

The radius of the disc is $3-x$.
The height of the disc is

The height of the disc is Δy.
The volume oi the disc is \longrightarrow
The volume of the disc is $\pi(3-x)^{2} y$.
The required volume is

The required volume is $\int_{-4 \sqrt{3}}^{\frac{4 \sqrt{3}}{1}}(3-x)^{2}$ dy
$=\int_{-4 \sqrt{3}}^{4 \sqrt{3}}\left(3-y^{2} / 16\right)^{2} d y=2 \pi \int_{0}^{4 \sqrt{3}}\left(9-(3 / 8) y^{2}+y^{4} / 256\right) d y$
$=2 \pi\left[9 y-y^{3} / 8+y^{5} / 5(256)\right]_{0}^{4 \sqrt{3}}$
$=2 \pi\left[36 \sqrt{3}-(8) 3^{3 / 2}+(4) 3^{5 / 2} / 5\right]$
$=2 \pi \sqrt{3}(36-24+36 / 5)=2 \pi \sqrt{3}(12+36 / 5)$
$=24 \pi 3(1+(3 / 5))=(192 \sqrt{3} \pi) / 5$
The required volume is $192 \sqrt{3} \pi / 5$ cubic units.
3. Use the shell method in calculating the volume generated by revolving the area bounded by $16 x=y^{2}$ and $x=3$ about the line $x=3$.

Solution:

The height of the elementary strip is $2 \mathrm{y}=\longrightarrow$ The height of the elementary strip is $2 y=8 \sqrt{x}$. The average distance of the elementary strip from $x=3$ is \qquad
The average distance of the elementary strip from $x=3$ is $3-x$.

The volume of the cylindrical shell generated on rotating the representative rectangle about $x=3$ is \longrightarrow The volume of the cylindrical shell generated on rotating the representative rectangle about $x=3$ is $2 \pi(3-x) \cdot 8 \sqrt{x} \Delta x$. The required volume is \longrightarrow

The required volume is

$$
\begin{aligned}
& 16 \pi \int_{0}^{3} \sqrt{x}(3-x) d x \\
& =16 \pi \int_{0}^{3}\left(3 x^{1 / 2}-x^{3 / 2}\right) d x=16 \pi\left[2 x^{3 / 2}-(2 / 5) x^{5 / 2}\right]_{0}^{3} \\
& =16 \pi\left(23^{3 / 2}-(2 / 5) 3^{5 / 2}\right)=32 \pi\left(3^{3 / 2}-3^{5 / 2} / 5\right) \\
& =32 \sqrt{3} \pi(3-(9 / 5))=(192 \sqrt{3} \pi) / 5
\end{aligned}
$$

The required volume is $192 \sqrt{3} \pi / 5$ cubic units.

T. Unit 20

Final Examination

The final examination consists of 25 questions that cover all the work done in mathematics 121 at Iowa State University.

Only one answer is correct in each question. Choose the correct answer from a, b, c, d or e. I. Evaluate $\int_{1}^{9} 1 /(x+3) d x$
a. $\ln 9$
b. $\ln 4$
c. $\ln 12$
d. $\ln 3$
e. none of the above
2. Evaluate $\int_{0}^{1} \sqrt{x}(1-\sqrt{x}) d x$
a. $4 / 9$
D. 4/土
c. $4 / 13$
d. $4 / 15$
e. none of the above
3. If $y(x) \int \frac{x}{3} f(t) d t, \sin x^{\prime} y^{\prime}(x)$.
a. $g(x)$
b. $x g(x)$
c. $3 x \operatorname{g}(x)$
a. $3 g(x)$
e. none of the above
4. Find $\int\left(\cos ^{2} x-\sin ^{2} x\right) d x$
a. $-\sin 2 x / 2$
b. $\cos 2 x+c$
c. $\cos 2 x / 2+c$
d. $\sin 2 x / 2+c$
e. none of the above
5. Find $\int\left(e^{x}+7\right)^{5} e^{x} d x$
a. $e^{x}+7+C$
b. $\left(e^{x}+7\right)^{6} / 6+c$
c. $\left(e^{x}+7\right)^{5}+c$
d. $e^{6 x}+c$
e. none of the above
6. Find $\int \sec ^{2} x /(\tan x) d x$
a. In $|\tan x|+c$
b. $\ln \left|\tan x+\sec ^{2} x\right|+c$
c. $\quad \ln \left|\sec ^{2} x\right|+c$
d. In $|\cos x|+c$
e. none of the above
7. Find $\int 1 /\left(16 x^{2}+25\right) d x$
a. $\tan 4 x / 5+C$
b. arc tan $4 x / 5+c$
c. $\ln \left(16 x^{2}+25\right)+c$

1. $1 / 4 \operatorname{arc} \tan (4 x / 5)+c$
e. none of the above
2. Evaluate $\int \sqrt{x^{2}-25} d x$
a. $\ln \left|x+\sqrt{x^{2}+25}\right|+c$
i. $\sqrt{x^{2}-25}+c$
c. $\ln \left|x+\sqrt{x^{2}-25}\right|+c$
d. $\sin \sqrt{x^{2}-25}+c$
e. none of the above
3. Evaluate $\int 9 x^{2} \operatorname{Inx} d x$
a. $3 x^{3} \ln x-x^{2}+c$
b. $9 x^{3} \ln x+x^{2}+c$
c. $9 x^{3} \ln x+c$
a. $6 \times 4+c$
e. none of the above
4. Find $\int 2 \sin (\ln x) d x$
a. $\sin \ln x+2 \cos \ln x$
b. $x(\sin \ln x-\cos \ln x)+c$
c. $4 x \operatorname{cosin} x+c$
d. $\sin \ln x+\cos \ln x$
e. none of the above
5. Complete the square of the function

$$
7 x^{2}+3 x+4
$$

a. $7(x+3)^{2}+6$
b. $7(x+3)^{2}+1$
c. $7(x+2)^{2}+3 / 71$
d. $7(x+3 / 28)^{2}+103 / 28$
e. none of the above
12. s'valuate $\int 1 / 4-(\dot{x}-2)^{2} \mathrm{dx}$
a. 2arc $\sin (x-2)+C$
b. arc $\sin (x-2)+c$
c. arc $\sin (x-2) / 2+c$
d. arc $\sin (x-2) / 2+\ln 4 x+c$
e. none of the above
13. Express $(5 x+5)\left((x-1)\left(x^{2}+4\right)\right)$ into partiai fractions.
3. $2 /(x-1)+(-2 x+3) /\left(x^{2} \quad 4\right)$
b. $2 /(x-1)+6 /\left(x^{2}+4\right)$
c. $1 / x-1+(6 x+3) /\left(x^{2}+4\right)$
d. $2 / x-1+(7 x+3) /\left(x^{2}+4\right)$
e. none of the above
14. Evaluate $\int(x+4) /(x+1)^{2} d x$
a. $1 /(x+1)-7 /(x+1)^{2}+C$
b. $\quad \ln (x+1)-3 /(x+1)+c$
c. $2 \ln (x+1)+C$
d. $3 /(x+1)-9(x+1)^{2}+c$
e. none of the above
15. Find $\int 70 \cos ^{4} 2 x \sin ^{3} 2 x d x$
a. $35 \cos ^{5} 2 x+7 \sin ^{3} 2 x+c$
b. $-7 \cos ^{5} 2 x+5 \cos ^{7} 2 x+c$
c. $8 \cos ^{4} 2 x+3 \sin 2 x+c$
d. $6 \cos ^{5} 2 x+9 \sin 2 x+c$
e. none of the above
16. Find $\int 2 /(5+3 \sin x) d x$
a. arc $\tan (5 \tan x / 2+3) / 4+c$
b. arc $\tan (5 \tan x / 2+2) / 2+c$
c. $\operatorname{arc} \cos (3 \tan x / 2+1)+c$
d. $\operatorname{arc} \sec (5 \tan x / 2+3)+c$
e. none of the above
17. evaluate $\int_{0}^{4} \sqrt{t^{2}+6 t+9} d t$
a. 18
b. 20
c. $\hat{2} 2$
d. 24
e. none of the above
18. Compute the area under the graph $(x-1)^{2}$ between
$x=1$ and $x=4$.
a. 7
b. 8
c. 9
d. 10
e. none of the above
19. Find the average value of $(\pi \cos x) / 3 \sqrt{\sin x}$ over the interval $[\pi / 6, \pi / 2]$.
a. $2-\sqrt{2}$
b. $2+\sqrt{2}$
c. $-2-\sqrt{2}$
d. $-2+\sqrt{2}$
e. none of the above
20. What is the area under the curve $y=\sin ^{2} x$ from $\mathrm{x}=0$ to $\mathrm{x}=\infty$?
a. 70
b. 62
c. 34
d. infinite
e. none of the above
21. Express $(-2 \sqrt{3}, 2)$ in polar coordinates.
a. $(4, \pi / 6)$
b. $(3, \pi / 3)$
c. $(4,5 \pi / 6)$
d. $(3, \pi / 6)$
e. none of the above
22. Does the sequence defined by $a_{n}=5^{n} / n$! converge or diverge?
a. converges to 0
b. diverges
c. converges to 25
d. converges to 225
e. none of the above
23. Find the area bounded by the curve $r^{2}=81$ cos 2θ.
a. 9
b. 81
c. 27
d. 243
e. none of the above
24. Find the area of the surface of revolution generated by revolving a loop of the curve $128 \mathrm{y}^{2}$ $=16 x^{2}-x^{4}$ about the x axis.
a. 3π
b. 4π
c. 5π
d. 6π
e. none of the above.
25. Find the volume generated by revolving the ellipse $4 x^{2}+9 y^{2}=36$ about the y axis. a. 12π
b. 18π
c. 24π
d. 30π
e. none of the above

XI. APPENDIX B: SIGN-ON PROCEDURE

PLATO is a general purpose computer which gives the user a lot of control. To operate the computer the student and computer will respond in the following way:

PLATO:
Press NEXT to begin
Student:
NEXT
PLATO:
Day, month, year
Welcome to PIATO
Type your name, then press NEXT
Student:
>agbor
PIATO:
Type the name of your PLATO group. Then, while holding the SHIFT key, press the STOP key, when you are ready to leave, you should press these same keys (SHIFT-STOP) to "sign off":
student:

$$
>\text { ames }
$$

PIATO:
Type your password, then press NEXT

Student:

$$
>m b i
$$

PIATO:

AUTHOR MODE

Choose a lesson
HELP available
Student:
> agbor

FILATO:
Index to CALCULUS CAI UNITS
a. Unit 1
b. Unit 2
c. Unit 3
d. Unit 4
e. Unit 5

さ. Tnit 6
g. Unit 7
h. Unit 8
i. Unit 9
j. Unit 10
k. Unit 11

1. Unit 12
m. Unit 13
n. Unit 14

0: Unit 15
p. Unit 16
q. Unit 17
r. Unit 18
s. Unit 19
t. Unit 20

Choose a subject
BACK to exit, HELP is available
A. The Plato Keyboard Every PLATO terminal has a keyboard like a typewriter with special features. The following are special keys of the PLATO seyboard and their functions:

1. The HELP key allows students to make optional sections of a lesson.
2. The SHIFT key produces capital letters when a letiter tinai is not a capital letter is pressed.
3. The ERASE key erases what has been typed.
4. The TAB key is equivalent to hitting the space bar as many times as is necessary to reach a preset column on the screen.
5. The MEXT key makes it possible to proceed to the nexi display.
6. The EDIT key is used for correcting typing.
7. The ANS key can be used by the student to get the correct answer to a question.
8. The FEIP key aiso enables the user to enter the sequence.
9. The STOP key throws out output destined for the terminal.
10. The BACK key is used to review sequences.
B. Basics Aspects oÍ PLATO

The PLATC interactive educational system consists of a repeating sequence which is a display on the student's screen followed by the student's response to the display. The display information consists of line drawings, graphs and animations. The student responds to this display by pressing a single hey, by pointing at a particular area of the screen, by typing a word, sentence or mathematical expression or even by making a geometrical construction. Authors generally provide enough details about the possible student responses.

